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Abstract. Applause is an ancient, widespread collective behaviour by
which an audience expresses appreciation at the conclusion of a collective
event such as an artistic performance or a public ceremony. In some cul-
tures, it is possible to observe a spontaneous transition from an initially
incoherent to a surprisingly synchronised form of applause. Such kind of
emergent behaviour has long since fascinated researchers from different
disciplines. This paper shows a possible application of formal methods
to study similar phenomena. The key idea is to model the audience as a
concurrent system, where each person is a separate process that follows
the same, simple behaviour. The model can then be automatically anal-
ysed to study the possible evolutions of the system as a whole, and in
particular to assess the likelihood of emerging synchronisation.

1 Introduction

The formal representation of systems of interacting components, as a first step
towards their rigorous and possibly automated analysis, has long since been a
primary concern in research on concurrency theory. Arising from generalisations
of the classic theory of languages and automata for sequential systems, process
algebras [11] have been an invaluable asset in this respect.

Owing to the fact that, arguably, no single formalism can capture every form
of concurrent computation to a suitable degree of clarity and elegance [31], a
number of process algebras have been proposed over the years [5, 23, 30]. More
sophisticated formalisms focus on specific aspects of particular classes of systems,
such as mobility, which allows to define dynamic communication structures [32],
and locality of interaction [17].

Novel formalisms and mechanisable workflows have recently been proposed to
support the study of active subjects of research in different scientific disciplines.
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Process algebras were already used over two decades ago to model some aspects of
the social behaviour of insects [36, 38], but with limited possibilities of carrying
out any automated analysis. Researchers in biology, complexity science, and
other fields are now slowly becoming increasingly aware and appreciative of the
potential benefits of applying formal models of concurrency to their scenarios of
interest [4,6]. More recent contributions following up on this line of research aim
at supporting the study of emergent behaviour in complex natural or artificial
systems. Modern formal languages to naturally express aspects such as attribute-
based communication [1,3,18], which allows for dynamic communication groups
as occurring in e.g. social networks [15], or stigmergic interaction [12], typical of
some biological systems, have facilitated the formal specification and analysis of
different classes of systems, such as matching protocols like stable marriage [15,
16], flocking birds [14], and the collective foraging behaviour of ants [13].

Following up on this trend, in this paper we consider the well-known collective
behaviour that manifests itself in an applauding audience at the end of a collec-
tive event, such as an artistic performance or a public ceremony. We focus on the
fascinating phenomenon whereby, from an initial phase of incoherent clapping,
the people in the audience end up clapping in unison [33,34,37]. Our main goal
is to demonstrate once again how the methodologies originally developed for the
study of concurrent systems may be profitably applied to undertake mechanised
reasonings on phenomena of this kind. To do so, we gradually introduce a model
of a clapping audience, then turn the model into formal specifications amenable
to mechanised analysis. We rely on formal analysis to understand whether such
a model would be able to reproduce anything similar to the mentioned emergent
synchrony observed in real audiences.

The paper is structured as follows. Section 2 introduces our model. Section 3
describes the analysis workflow to study our model, and presents our experimen-
tal evaluation. Section 4 contains our conclusions and ideas for future research,
and discusses some literature related to the phenomenon of synchronised ap-
plause and its modelling.

2 Modelling the audience

Let us consider an audience of N people. Initially, everyone claps at his own pace.
At the same time, people listen to each other, in the attempt to collectively reach
a certain rhythm. The idea is that multiple claps occurring simultaneously will
produce a louder sound, which every person can use as a reference to adjust his
own pace. We would like to assess whether the whole audience would be able
to achieve a synchronised clapping, if every person were to follow this kind of
behaviour.

We model the audience as a collection of agents. These agents evolve in steps,
which intuitively correspond to the actual moments of time when their actions
take place. Notice that the steps do not correspond to actual timestamps, but
are merely functional to providing a logical ordering of the actions.
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All the agents behave in the same way. At each step, an agent may or may
not clap, depending on his current clapping pace; at the same time, the agent
pays attention to the rest of the audience. When enough agents are clapping
together, so that a loud enough sound is produced, the agent may adjust his
way of clapping in an attempt to get closer to that of the others.

Let us use a pseudo-formal notation to represent this behaviour:

Behavior ≜ {Listen; MaybeClap; Adjust}; Behavior

Semicolons denote a sequence of actions. Listen represents the agent’s ability
to pay attention to the rest of the audience. MaybeClap is when the agent
decides whether or not to clap. Adjust represents the agent’s potential attempt
to make his pace more in sync with that of the audience. The tree operations
are enclosed in braces to indicate that they take place in the same time step.
Lastly, the agent repeats these operations indefinitely.

We will soon explain in further detail how we implement each of the actions
above. But first, let us introduce the parameters in which our model will be
specified and the variables that make up the state of our agents.

State variables and parameters. Let us assume that each agent has an identifier
i ∈ {0, . . . , N−1}. Each agent i has its own clapping period stored in a variable
Ti. Intuitively, this means that the agent would clap his hands exactly every T
time steps, if it were not influenced by others. In order for an agent to “know”
when it is the right moment to clap, we equip it with a clapping counter ci that
is regularly decremented and incremented. If ci reaches a value of 0, it means
that the agent i is clapping during that step. The increment or decrement of
ci is governed by a third variable, named signi. Later on, we will omit indices
whenever they are clear from the context.

As stated above, our agents listen to the audience and can detect louder
sounds (resulting from many agents clapping at the same time) which they use
as a reference to synchronise their clapping. For that reason, each agent uses a
variable loud , which contains a reference value to distinguish a loud event from
a quieter one. Lastly, we equip agents with a counter tSinceLoud tracking the
number of steps passed since a loud sound was last detected.

Some of the variables above are initialised to fixed values: namely, sign =1
and tSinceLoud =−∞. The others are parameterised, which allows us to tune
their initial value and explore how different values affect the system’s dynamics.
Specifically, the initial clapping period of each agent will be nondeterministically
chosen from the interval between two parameters Tmin and Tmax , and may vary
between agents. Setting a lower value of Tmin allows for agents that clap faster;
higher values of Tmax , in turn, allow agents that clap more slowly. The range of
allowed values (Tmax −Tmin) also affects how chaotic the initial state may be.
Trivially, when Tmin = Tmax , agents all start with the same clapping period.
A broader range allows for a less uniform audience.

Variable loud is also initialised according to a parameter loud (0), and will be
the same for the entire audience. When loud (0) is low, agents are more inclined
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Table 1. Variables and parameters in our model.

Variables
Name Meaning Initial values

T clapping period: the agent claps every T time steps Tmin, . . . ,Tmax
c clapping counter: when 0, the agent is clapping 1, . . . , T/2

sign determines whether c is increasing or decreasing 1

loud determines whether the audience is clapping loudly loud (0)

tSinceLoud number of steps since the last loud clap −∞
Parameters

Name Meaning Constraints
N Number of agents Positive

Tmin,Tmax Range of initial values for T Positive, Tmin < Tmax

loud (0) Initial value of loud Positive

to be influenced by the audience. For instance, when loud (0) = 2, any two agents
clapping at the same time will be interpreted as a loud event. Lastly, the number
of agents itself N is also a parameter. All parameters are assumed to be positive,
with Tmin < Tmax . We summarise the parameters in Table 1.

Sensing loud claps. During a Listen operation, an agent detects whether the
audience is clapping “loudly” during the current time step. To do so, the agent
simply counts how many agents have just clapped (i.e. their counter c is currently
set to 0) and compares the count to loud , which acts as a threshold. The agent
then resets tSinceLoud if the threshold is reached or exceeded, or increments it
otherwise.

Listen ≜ audienceClap ← #{i ∈ {0, . . . , N − 1} | ci = 0} ;
tSinceLoud ← 0 if audienceClap ≥ loud else tSinceLoud + 1

Clapping. The clapping logic is rather simple, as it just concerns the update
of c in a regular pattern. Specifically, the agent just updates c to the result of
c + sign. As stated earlier, sign is initially set to 1, so c is initially increasing.
When c reaches T ÷ 2, sign is flipped to −1. Thus, from the next time step, c
will decrease. When c hits 0 (and the agent claps), is flipped back to 1 and the
counter starts increasing again, and so on. Thus, plotting the value of c over
time results in a triangle wave of period T .

MaybeClap ≜ sign ← 1 if c = 0 else − 1 if c = T ÷ 2 else sign ;

c← c+ sign

Adjusting the rhythm. In the last part of their behaviour, agents may perform
several adjustments to try and synchronise with the rest of the audience; we will
describe them one at a time.
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First, we let agents adjust their own clapping period by using the time in-
terval between loud claps (tSinceLoud) as an approximation of the synchronous
applause period. Let us assume that agents have always access to their previous
value of this variable, and let us call this value tSinceLoudprev.

In practice, when an agent hears a loud clap, he computes the average be-
tween tSinceLoudprev and his current period T , bounds the result between Tmin
and Tmax , and sets his new period to the final result. The first loud clap is not
used to adjust the period because, at that point in time, tSinceLoudprev still has
a value of −∞; intuitively, this models the fact that at least two loud claps have
to happen before agents can adjust their pace.

Adjust ≜ T ← T if tSinceLoud = 0 ∨ tSinceLoudprev = −∞
else (T + tSinceLoudprev)÷ 2 ;

T ← max(Tmin,min(T,Tmax )) ;

. . .

Agents may also adjust the loudness threshold, i.e., their value of loud . If the
threshold is crossed by a large margin, agents increase it. In this way, smaller
groups are prevented from influencing the agents in the future. Conversely, if
no loud clap is heard for a long enough timespan, agents will start listening for
weaker claps. However, we constrain this decrement to happen only once every
Tmax ÷ 2 steps, so that the threshold does not fall too quickly towards 0. By
this mechanism we aim at modelling a cooperative audience; even if they are not
actively communicating, the agents still want to find synchrony (e.g., because
it is a culturally-ingrained way to demonstrate their appreciation of the show),
and therefore are willing to synchronise in smaller groups if a large one has not
emerged yet.

Adjust ≜ T ← . . . ;

loud ←


loud + 1 if tSinceLoud = 0

loud − 1 if ∃k > 0. tSinceLoud = k(Tmax ÷ 2)

loud otherwise;

. . .

Finally, we may need to slightly adjust the evolution of c. The reason is
that different agents may clap with different phase even when they converge to
the same clapping period, and thus never synchronise fully. Therefore, we need
a phase-adjustment mechanism. Our solution is as follows: when an agent has
heard a loud clap, but did not take part in it, then it holds his value of c for
the current time step. In practice, we implement this by subtracting sign from
c, reversing the previous update within MaybeClap.

Adjust ≜ T ← . . . ; loud ← . . . ;

c← c− sign if tSinceLoud = 0 ∧ c ̸= 1 else c
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Limitations. Let us conclude this overview of the model by listing some of its
current limitations. First, we basically treat agents as very precise oscillators.
In isolation, their clap completely lack any jitter, i.e., they never deviate from
a perfectly periodic behaviour. Additionally, all agents are assumed to clap at
the same intensity, and every clap may be heard by the entire audience. So, the
perceived loudness of a clap at a given time step is the same for everybody and
merely corresponds to how many agents are clapping during that step. Lastly,
we assume that the agents can always perfectly measure the number of agents
clapping at any given time: they can never misclassify a loud clap as weak, or vice
versa. These limitations are not due to the modelling tools, which fully support
writing more detailed models that keep the complications above into account. For
instance, we might add nondeterministic error values to every measurement the
agent performs. We left these complications out because we do not believe that
they would affect significantly the emergence of synchrony in this (admittedly
idealised) setting.

3 Analysis

To assess whether the rules laid out in Section 2 lead to the emergence of syn-
chronous applause, we formalised them as LAbS specifications [12] and then
generated 1000 simulations using our tool SLiVER [19].
LAbS and SLiVER. LAbS is a high-level language for agent-based models. It lets
one describe agents’ behaviour through intuitive, compact primitives by which
agents can observe and react to each other’s exposed features, or attributes.
Thus, it shares some of the motivations and principles originating in the context
of attribute-based communication [2]; however, its design favours indirect inter-
action over explicit message passing. SLiVER, in turn, is a publicly available3

prototype for automated analysis of LAbS specifications. It sports a modular, ex-
tensible architecture allowing reuse of different state-of-the-art verification tools
for general-purpose programming languages [19, 21]. For this work, we will rely
on SAT-based bounded model checking (BMC) of sequential C programs [9].

LAbS uses a fairly similar syntax to the pseudo-code snippets that we pre-
sented in Section 2, and thus implementing our model has been straightforward.
We only had to extend the language by adding a count primitive that allows to
count the number of agents satisfying a given predicate, an operation that we
need to encode the Listen operation. This is a straightforward generalisation
of the primitives for existential and universal quantification over agents (exists,
forall), which are already part of LAbS. We are aware that this operation re-
quires full knowledge of the system, and our motivations for adding it to the
language follows the same argument by which we justified upon introducing ex-
ists, forall, and other similar constructs [14]. In short, these constructs allow us
to compactly represent observations that we assume an agent can perform in a
real-world context. In our example, the ability to count simply models the fact

3 https://github.com/labs-lang/sliver

https://github.com/labs-lang/sliver
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that agents are able to listen to their surroundings. We are aware that these
operations would be hard to realise in a traditional distributed setting, but at
the moment we prioritise ease of modelling over these concerns.
LAbS specifications. Fig. 1 shows the LAbS specifications that we derived from
the model of Section 2. We only resort to minimal embellishments (such as
using mathematical notation for comparison and assignment operators, and a
different font for parameters) over the actual, machine-readable specification,
mostly for sake of compactness. In brief, a LAbS specification always starts with
a system section that declares external parameters and defines the composition
of the system (lines 1–4). This is followed by the definition of agents, with their
internal state (called interface) and their behaviour (lines 6–59). Notice that
each variable in the interface must be initialised, but the initial value may be
nondeterministically picked from a range (or a list of alternatives, not shown
here). Then, two more sections follow. In the assume section, we can provide
predicates to constrain the initial state of the system, while in the check section
we may specify properties of interest.

The specifications closely follow our model, with a few minor changes:

– We shorten some variable names: namely, we use tsl for tSinceLoud and
audience for audienceClap.

– To implement the loudness threshold adjustment, we make use of a helper
variable loud_decr that tells us when is the time to decrement the threshold.

– Agents store the clapping half-period tau=T/2 instead of the period T . This
makes parts of the specifications shorter, but is otherwise equivalent to the
already discussed model. Accordingly, the specifications are parameterised
in taumin=Tmin/2 and taumax=Tmax/2 rather than in Tmin,Tmax .

– We split the Adjust behaviour in two parts and put the MaybeClap op-
erations between them: this is equivalent but takes fewer operations and
support variables.

– We add a “dampening” mechanism to the Listen operation: every loud clap
after the first one is only recognised as such if the previous one happened at
least 2taumin steps ago (line 19).

As for the assume and check sections, we use the former to restrict the initial
values of c to the interval 1, . . . , T/2, as seen in Table 1 (lines 61–65). The latter,
in turn, specifies the property of being in synchrony as being in a state where all
agents assign the same values to variables c, tau, and sign (lines 67–73). Here,
we use the modality after B to indicate that the property should be checked B
steps after the initial state.
Experimental setup. All the simulations were performed on a dedicated 64-bit
GNU/Linux workstation with kernel 5.10.27, equipped with 128 GB of physical
memory and a dual 3.10 GHz Xeon E5-2687W 8-core processor. All simulations
used the parameters N = 16, loud (0) = 4, Tmin = 8, Tmax = 20, and ran for
192 time steps. (Notice that each time step requires 2N transitions by individual
agents). On average, SLiVER takes around 21 minutes to generate a trace with
these parameters on our machine; this is due to the fact that we use the same,
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Fig. 1. LAbS listing for our clapping audience model.

1 system {
2 extern = N, loud (0), taumin , taumin

3 spawn = Agent: N
4 }
5

6 agent Agent {
7 interface =
8 tau: taumin ..taumax ;
9 c: 1..taumax ;

10 cPrev: 1; tsl: −1; sign: 1;
11 loud: loud (0);
12 loud_decr: taumax

13

14 Behavior = cPrev← c; {
15 # Listen
16 audience := count Agent a,
17 (cPrev of a) = 0;
18 loudClap := if audience≥ loud
19 and (tsl = −1 or tsl≥ 2∗taumin)
20 then 1 else 0;
21

22 # Adjust (I)
23 tau_avg := (2∗tau + tsl) ÷ 4;
24 tauNext := if loudClap = 1
25 and tsl ̸=−1
26 then tau_avg else tau;
27 tauNext := max(taumin , tauNext);
28 tauNext := min(taumax , tauNext);
29

30 sign← if c = 0 then 1
31 else if c≥ tauNext then −1
32 else sign;
33

34 # MaybeClap
35 cNext := if loudClap = 1
36 and tsl ̸=−1
37 and cPrev ̸= 0
38 then c
39 else min(c + sign, tauNext);

40 # Adjust (II)
41 tau← tauNext;
42 c← cNext;
43 loud← if audience > loud
44 then loud + 1
45 else if loud_decr = 0
46 then max(loud − 1, 2)
47 else loud;
48

49 loud_decr← if loudClap = 1
50 or loud_decr = 0
51 then taumax

52 else loud_decr − 1;
53

54 tsl← if loudClap then 0
55 else if tsl = −1 then −1
56 else min(2∗taumax , tsl + 1)
57

58 }; Behavior
59 }
60

61 assume {
62 Initc = forall Agent a,
63 1 < (c of a) and
64 (c of a)≤ (tau of a) − 1
65 }
66

67 check {
68 Sync = after B
69 forall Agent a, forall Agent b,
70 (c of a) = (c of b) and
71 (tau of a) = (tau of b) and
72 (sign of a) = (sign of b)
73 }
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(a) Run #1 (1000 simulations, 192 steps).
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(b) Run #2 (200 simulations, 256 steps).

Fig. 2. Traces that have reached synchrony by a given time.

verification-oriented encoding for simulation. We obtain traces by performing
BMC on our program with a randomised heuristics (to ensure that simulations
vary) and a dummy property that fails after the desired trace length has been
reached. We do apply some optimizations, e.g., by concretising the initial state
and some other sources of nondeterminism, but this approach is bound to be less
performant than implementing a bespoke interpreter. At the same time, it lets
us reuse the same encoding and workflow we developed for verification, which
greatly reduces development and maintenance efforts. A separate interpreter,
furthermore, would require a proof that its traces are equivalent to those allowed
by the verification encoding. Since this task is essentially single-core and requires
a modest amount of memory (about 4.15 GB), we were able to run 10 instances
of SLiVER in parallel, bringing our throughput close to 2 minutes per simulation.

Results and discussion. In Fig. 2a we plot the number of simulation that have
achieved synchrony against time. By synchrony, we mean that at some point
before the end of the simulation every agent has the same period T , the same
value of the clapping counter c, and the same value of sign, meaning that they
are all following the same clapping pattern. SLiVER randomly picked 4 traces
that were already synchronous in the initial state. Apart from these, simulations
that exhibit synchrony in the first 100 time steps are visibly rare. However, a
significant number of traces undergoes a phase transition in the surroundings
of t = 128 (the shaded region in our plot). In fact, by t = 112, the audience
has synchronised in only 29 traces out of 1000, while by t = 144 this number
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Fig. 3. Visualization of four simulations from our experimental run.

has risen to 389. After that, traces converge to synchrony in a seemingly linear
fashion. Overall, 581 of our simulations (i.e., 58%) achieve synchrony. As further
evidence of our audience’s ability to converge, we then performed an additional
200 simulations with a bound of 256 time steps. Our results (shown in Fig. 2b)
largely replicate those of the first run, although the phase transition now appears
to be slightly delayed. Once again, we observe that the number of converging
simulation grows slowly, but linearly with time after the phase transition, and
by step 256 we observe synchrony in 154 simulations out of 200 (77%).

As an additional source of insight into our audience’s dynamics, in Fig. 3 we
graphically represent a few illustrative simulations. While the topmost simulation
cannot achieve synchrony within 192 steps, the other simulations all converge,
albeit at different times (from top to bottom: 68, 128, and 176).

For each trace, we plot the number of agents clapping at every time step,
along with the average value of the clapping period T and the value of loudness
threshold loud . We also show the interval between the minimum and maximum
values of T within the audience as a shaded area. We are also able to translate
these simulations into animations, which gives valuable and intuitive insight into
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Fig. 4. Visualization of the third simulation from Fig. 3.
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the dynamics of our system. In Fig. 4 we showcase a few frames from the third
simulation: the full video is available online.4 Each agent is depicted as a square,
marked by its value of the clapping counter c and (in parentheses) the half-period
tau. The colour of each square is also determined by the value of c. We also report
values for tsl and loud on top of each frame, as well as the step number on the
bottom. Here, we chose to focus on the initial part of the simulation, where the
system spends some time in a seemingly chaotic behaviour until agents gradually
start synchronising, until step 128 when they begin to clap in unison.

On one hand, agents’ periods converge rather easily after loud claps start
happening: by looking at the peaks of the clapping agents plot, in all conver-
gent traces we observe the quick emergence of a leading group followed by one
or two smaller assemblies. In contrast, the topmost trace shows a more erratic
behaviour in the early steps, i.e., until agents settle for a lower loudness thresh-
old: at that point, they start recognizing loud claps and gradually gather into
synchronised groups (though not quickly enough to converge within the time
limit). Sometimes, a very loud clap early in the simulation may speed up con-
vergence, as it raises the loudness threshold which in turn prevents interference
from smaller groups (see trace number 2 from the top). However, these early
loud claps may be merely caused by chance, as many agents with different peri-
ods and phases somehow end up clapping in unison at some point. In this case
(shown, for instance, in the bottommost trace), this is counterproductive, as the
higher threshold makes agents ignore potentially useful cues from the audience
(see the bottommost trace).

Synchronising phase takes a much longer time than synchronising periods:
this is evident by looking at how the smaller groups and delay their claps in such
a way to get closer and closer to the leading one, until full synchronisation is
achieved. Quite obviously this is a result of our implementation of Adjust, by
which an agent can only adjust his phase by one unit at a time. While perhaps
inefficient, we argue that this design choice is both general (i.e., it works across a
wide range of situations) and natural (i.e., it still lets agents clap with a certain
regularity). Manipulating c more abruptly may lead to faster convergence in some
cases, but in others it may cause oscillations where the “chasers” never manage
to get the phase right, and/or may make them stop clapping for long spans of
time (because their value of c stops hitting 0 regularly). Having said that, we
cannot argue with certainty that our policy to adjust phase is the absolute best,
and leave further investigation about this aspect for future work.
Verifying that synchrony is persistent. In the previous sections, when discussing
audiences that start clapping in unison, we have used the word convergence
because we believe that our model does not allow breaking the synchrony: once
reached, there is no way for the agents to drift back into incoherent applause.

While this fact is perhaps easy to deduce by looking at the specifications,
we now want to showcase our ability to mechanically prove this kind of state-
ments with SLiVER. Therefore, we slightly revise our specification and add an
assumption that all agents are already in synchrony in the initial state. We then
4 https://doi.org/10.5281/zenodo.11374365

https://doi.org/10.5281/zenodo.11374365
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Fig. 5. Verification times for our synchrony preservation experiments.

run SLiVER to prove that the synchrony is not broken (i.e., property Sync at
lines 67–67 of Fig. 1 is preserved) after a given number of steps.

In principle, it would be sufficient to prove this for a single step: if the au-
dience starts from a synchronous state and the property is preserved, different
should happen in the next round. However, we also want to use this task as a
way to benchmark how our chosen technique (BMC) scales in both the verifica-
tion bound and the size of the system. Therefore, we run tasks for systems of 16,
32, 48, and 64 agents. For each system, we start by verifying the property for a
single step. If the task succeeds, we increment the verification bound by one and
run another task. We stop when we find a verification bound for which SLiVER
is not able to reach a verdict within 30 minutes, or when the bound exceeds 100.

The results of this experiment are summarised in Fig. 5. All experiments that
terminated gave a positive verdict, reinforcing our conviction that the agents
are not able to break synchrony once it is achieved. For all systems, verification
times grow in a slightly super-linear fashion and are mainly affected by the size
of the system itself. For N=16, SLiVER never times out and can verify a system
up to a bound of 100 within 1255 seconds (about 20 minutes). However, when
we double the number of agents (N=32) SLiVER times out with a verification
bound of 56, which further decreases to 34 and then 21 for N=48 and N=64,
respectively. Notice that this loss of performance is at least partially justified by
the fact that, as the system grows in size, computing its evolution after each step
requires a higher number of individual state updates. Additionally, more agents
require more memory to hold their state variables. These factors are known to
negatively affect the underlying satisfiability procedure.

4 Conclusion and related work

In this work, we have once again stressed the growing importance that the study
of complexity and emerging behaviour is gaining among multiple research areas.
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We have traced a correspondence between this ongoing trend and the overarch-
ing concerns of concurrency theory, and argued that process-algebraic techniques
and tools may provide a solid foundation for the upcoming challenges that these
new applications confront us with. In particular, we have focused on attribute-
based formalisms as an effective way to capture the dynamic nature of these
systems and of the interactions happening among their components. To illus-
trate this, we have provided an intuitive specification of an audience of clapping
agents, and used the emergence of synchronised applause as a case study for
our analysis. To the best of our knowledge, this is the first attempt to integrate
formal modelling and analysis of such a scenario.

We have shown that our informal description of individual behaviour can
be easily captured by a high-level, formal agent-based language, and that we
may use the resulting specification to simulate our system. By doing so, we
empirically checked that a group of agents following this behaviour may in fact
achieve synchrony. The same specifications also allowed us to formally verify
that synchrony cannot be broken: once the agents are clapping in unison, they
will maintain the collective pace.

We believe that this ability to combine empirical, trace-based analysis with
formal, exhaustive state space exploration is the decisive advantage that these
languages and tools offer as a modelling solution. As interest in complex systems
cannot but grow in the future, it is essential that the rich toolbox of concurrency
theory and formal verification is made easily available to the broader scientific
community, through mature and highly usable languages and analysis platforms.

Studying this example gave us a number of ideas for future work. On the
semantics side, enforcing synchrony should be made easier, since it is common-
place in important contexts ranging from cellular automata [8] and Boolean
networks [25]. Ideally, one should be able to choose this or other forms of agent
interleaving at the time of analysis, without having to change the model as we
are currently forced to do. On the language side, we should allow users to define
and invoke functions, which should be treated as reusable sequences of atomic
operations. This would improve readability in the case of complex behaviours
such as the one we introduced in this work.

On the analysis side, our simulation workflow could benefit from an in-
creased throughput. We might obtain this by either leveraging state-of-the-art
solvers [22], or by pivoting to other symbolic tools with native support for sim-
ulation [7]. We should also allow to express a wider range of properties, such
as arbitrary LTL formulae [35]. Our alternative, explicit-state backend [20] does
support full model checking of safety and liveness properties, but symbolic tech-
niques would likely scale better as the number and complexity of the analysed
agents grows.

Data-driven approaches are worth pursuing too. In principle, we could inject
empirical measurements as assumptions at specific points in time, and check if
there are executions that fit the data. This could be used to validate the model,
or as a form of parameter search: we could parameterise parts of the model in
one or more symbolic variables and analyse which values fit the empirical data.
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Related work. A number of biological phenomena related to rhythmic patterns
and their synchronisation may be modelled as a population of coupled oscilla-
tors [39]. Analytical solutions for these populations are however hard to find, as
the resulting dynamics are highly non-linear. This approach is frustrated by the
high non-linearity of the collective dynamics, hence these models typically re-
strict themselves to weak coupling (i.e., the external perturbations have a small
instantaneous effect on each single oscillator). However, defining the (small) in-
teraction between any two oscillators as a periodic function of their phase offset
results in the Kuramoto model [27], which does allow to analytically derive
whether a group of oscillators will synchronise fully, partially, or not at all, de-
pending on the intensity of these interactions. Interestingly, the Kuramoto model
appears to be a good fit for collective applause dynamics [33,34].

At first glance, our agents might also look like a set of oscillators; however, by
specifying their evolution as a computational process, we can capture with ease
dynamics that are highly non-linear and thus do not lend themselves to a simple
mathematical description. Most notably, while the Kuramoto model assumes a
constant interaction (i.e., every agent continuously reacts to the phase difference
with respect to the others), our model allows agents to detect and react to the
general, aggregate loudness of the audience, in a discontinuous fashion.

We are not aware of many other works in this vein. In [28], each agent ad-
justs his rhythm based on his neighbours’ last clapping time and their clapping
period, but we believe that relying on the latter makes the model unrealistic
since agents do not explicitly communicate that information. However, differ-
ently from both our model and the Kuramoto model, agents in [28] influence
each other according to an inverse-square law (i.e., the intensity of the inter-
action decreases with the square power of the distance), and interactions are
overall limited to a local neighbourhood. These added constraints still allow for
emergent synchrony. In ApplauSim [24], agents react to the perceived collective
rhythm, as in our model, but this rhythm is computed as an average over a
short observation window. Crucially, both these models seem to somewhat rely
on “synchronisers”, or “backbone” agents, which receive little influence from the
rest of the audience and thus facilitate the emergence of synchrony. Our model
seems to perform well even in the absence of synchronisers, but we might study
their impact in future work.

Clapping and applause are complex, nuanced social behaviours [10], featuring
many aspects not covered in our model. For instance, choosing when to begin
and stop clapping is in itself an intricate choice informed by both individual pref-
erences (e.g., eagerness to show appreciation) and social cues (e.g., the perceived
mood of the audience). Models that originated in epidemiology [26] appear to be
well-suited to capture this and other forms of social contagion [29]. In the future
we could use this work to extend our model with a “startup” phase, where agents
have to decide when to start clapping. An advantage of our language-based ap-
proach is precisely this ability to combine concepts and behaviours coming from
different models, and study their interplay.
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