
Execution and monitoring of HOA
automata with HOAX

Luca Di Stefano

TU Wien, Austria

RV, September 16, 2025

HOA automata

HOA: v1
States: 2
Start: 0
AP: 1 "a"
Acceptance: 1 Inf(0)
Alias: @a 0
--BODY--
State: 0 "s0"
[@a] 0 {0}
[!@a] 1 {0}
State: 1 "s1"
[t] 1
--END--

s0 s1
¬a

0⃝

a
0⃝ true

G a

Tools: Owl, Spin, Spot, Prism, SemML, Strix, AutoHyper . . .

Competitions: SYNTCOMP

RV’25 Monitoring with HOAX, Di Stefano 2 / 10

HOA automata

HOA: v1
States: 2
Start: 0
AP: 1 "a"
Acceptance: 1 Inf(0)
Alias: @a 0
--BODY--
State: 0 "s0"
[@a] 0 {0}
[!@a] 1 {0}
State: 1 "s1"
[t] 1
--END--

s0 s1
¬a

0⃝

a
0⃝ true

G a

Tools: Owl, Spin, Spot, Prism, SemML, Strix, AutoHyper . . .

Competitions: SYNTCOMP

RV’25 Monitoring with HOAX, Di Stefano 2 / 10

HOA automata

HOA: v1
States: 2
Start: 0
AP: 1 "a"
Acceptance: 1 Inf(0)
Alias: @a 0
--BODY--
State: 0 "s0"
[@a] 0 {0}
[!@a] 1 {0}
State: 1 "s1"
[t] 1
--END--

s0 s1
¬a

0⃝

a
0⃝ true

G a

Tools: Owl, Spin, Spot, Prism, SemML, Strix, AutoHyper . . .

Competitions: SYNTCOMP

RV’25 Monitoring with HOAX, Di Stefano 2 / 10

HOAX - A HOA eXecutor

• Execute automaton based on the semantics of HOA

• Configurable input sources for automata inputs (drivers)
• User input (prompt)
• (Biased) random variables
• File-based

• Provide scriptable condition-reaction mechanisms (hooks)
• If (state reached / trace longer than x / etc.) . . .
• . . . Then (reset automaton / print message / etc.)

RV’25 Monitoring with HOAX, Di Stefano 3 / 10

HOAX - A HOA eXecutor

• Execute automaton based on the semantics of HOA
• Configurable input sources for automata inputs (drivers)

• User input (prompt)
• (Biased) random variables
• File-based

• Provide scriptable condition-reaction mechanisms (hooks)
• If (state reached / trace longer than x / etc.) . . .
• . . . Then (reset automaton / print message / etc.)

RV’25 Monitoring with HOAX, Di Stefano 3 / 10

HOAX - A HOA eXecutor

• Execute automaton based on the semantics of HOA
• Configurable input sources for automata inputs (drivers)

• User input (prompt)
• (Biased) random variables
• File-based

• Provide scriptable condition-reaction mechanisms (hooks)
• If (state reached / trace longer than x / etc.) . . .
• . . . Then (reset automaton / print message / etc.)

RV’25 Monitoring with HOAX, Di Stefano 3 / 10

Basic usage + Sample configuration

Command line
$ hoax aut.hoa --config conf.toml

conf.toml
1 # Main section (mandatory)

2 [hoax]

3 name = "My HOAX config" # Name for the configuration

4 version = 1 # Config file version (mandatory)

5

6 # Driver for propositions that have none defined

7 default-driver = "user" # User prompt (the default)

8

9 [[driver.flip]] # Notice the double brackets

10 aps = ["a"] # APs driven by this driver

11 bias = 0.7 # Bias of "true" (optional, default=0.5)

12

13 [[driver.flip]]

14 # (multiple "flip" drivers may be defined)

15 aps = ["b", "c"]

RV’25 Monitoring with HOAX, Di Stefano 4 / 10

Hook API example (Python)

• Runner objects track execution of an automaton
• We create Hook objects and append them to Runners

hook example.py
1 # Instantiate runner

2 aut = ... # HOA automaton (eg., parsed from file)

3 conf = DefaultConfig() # or: conf = TomlConfigV1("config.toml")

4 run = SingleRunner(aut, conf.driver)

5

6 # Instantiate and add hook

7 condition = Reach(2) # If state with index=2 is reached...

8 action = Reset() # Then reset automaton to initial state

9 run.add_transition_hook(Hook(condition, action))

10

11 # Basic run loop

12 run.init()

13 try:

14 while True:

15 run.step()

16 except StopRunner:

17 pass

RV’25 Monitoring with HOAX, Di Stefano 5 / 10

Monitoring with HOAX

Just a natural application of the tool features

We built Condition classes that turn true iff the run so far is
enough to establish that the run will be accepted

Then we merely add them to the runner via hooks

Command line
$ hoax aut.hoa --config conf.toml --monitor

Clearly only some acceptance conditions are actually
monitorable. Best effort in general case

RV’25 Monitoring with HOAX, Di Stefano 6 / 10

Monitoring with HOAX

Just a natural application of the tool features

We built Condition classes that turn true iff the run so far is
enough to establish that the run will be accepted

Then we merely add them to the runner via hooks

Command line
$ hoax aut.hoa --config conf.toml --monitor

Clearly only some acceptance conditions are actually
monitorable. Best effort in general case

RV’25 Monitoring with HOAX, Di Stefano 6 / 10

Monitoring with HOAX

Just a natural application of the tool features

We built Condition classes that turn true iff the run so far is
enough to establish that the run will be accepted

Then we merely add them to the runner via hooks

Command line
$ hoax aut.hoa --config conf.toml --monitor

Clearly only some acceptance conditions are actually
monitorable. Best effort in general case

RV’25 Monitoring with HOAX, Di Stefano 6 / 10

Acceptance Conditions in HOA

S = non-empty subset of states (or transitions)

acc ::= Inf(S) | Fin(S) | acc ∧ acc | acc ∨ acc

Inf(S) Visit at least one element of S infinitely often
Fin(S) Do not visit any element of S infinitely often

RV’25 Monitoring with HOAX, Di Stefano 7 / 10

Acceptance Conditions in HOA

S = non-empty subset of states (or transitions)

acc ::= Inf(S) | Fin(S) | acc ∧ acc | acc ∨ acc

Inf(S) Visit at least one element of S infinitely often

Fin(S) Do not visit any element of S infinitely often

RV’25 Monitoring with HOAX, Di Stefano 7 / 10

Acceptance Conditions in HOA

S = non-empty subset of states (or transitions)

acc ::= Inf(S) | Fin(S) | acc ∧ acc | acc ∨ acc

Inf(S) Visit at least one element of S infinitely often
Fin(S) Do not visit any element of S infinitely often

RV’25 Monitoring with HOAX, Di Stefano 7 / 10

Trap sets

A trap set T of automaton A is a non-empty subset of its states
st. once a run enters T , it may never leave

• Trap sets may be nested
• Minimal trap sets have no nested trap sets
• They correspond to bottom SCCs of A

We can build a mapping MINTRAPSETOF from each state of A to
the smallest trap set that contains it

• Reduction from SCC/condensation graph of A
• Indeed, it will return a set of SCCs
• If only 1 SCC, it is a bottom SCC, thus a minimal trap set

Monitoring by comparing current trap to acceptance set

RV’25 Monitoring with HOAX, Di Stefano 8 / 10

Trap sets

A trap set T of automaton A is a non-empty subset of its states
st. once a run enters T , it may never leave

• Trap sets may be nested
• Minimal trap sets have no nested trap sets
• They correspond to bottom SCCs of A

We can build a mapping MINTRAPSETOF from each state of A to
the smallest trap set that contains it

• Reduction from SCC/condensation graph of A
• Indeed, it will return a set of SCCs
• If only 1 SCC, it is a bottom SCC, thus a minimal trap set

Monitoring by comparing current trap to acceptance set

RV’25 Monitoring with HOAX, Di Stefano 8 / 10

Trap sets

A trap set T of automaton A is a non-empty subset of its states
st. once a run enters T , it may never leave

• Trap sets may be nested
• Minimal trap sets have no nested trap sets
• They correspond to bottom SCCs of A

We can build a mapping MINTRAPSETOF from each state of A to
the smallest trap set that contains it

• Reduction from SCC/condensation graph of A
• Indeed, it will return a set of SCCs
• If only 1 SCC, it is a bottom SCC, thus a minimal trap set

Monitoring by comparing current trap to acceptance set

RV’25 Monitoring with HOAX, Di Stefano 8 / 10

Example: checking for Inf(S)

Execute this algorithm after every step:

Input : Det. complete automaton A; its current state q ∈ Q
Output: good, bad, ugly, or ⊥.

1 Comps← MINTRAPSETOF(q) # O(|Q|)
2 T ←

⋃
Comps # O(|Q|)

3 if T ⊆ S then return good # O(|S|)
4 if T ∩ S = ∅ then return bad # O(|S|)
5 if T is minimal then
6 if T \ S is transient then return good else return ugly

O(|S|+ |ES|) (sub-graph limited to S)

7 return ⊥ # No verdict in this step

• Good prefix ⇔ the run will be accepted
• Bad prefix ⇔ the run will be rejected
• X transient ⇔ every run of A leaves X infinitely often
• Ugly prefix ⇔ further monitoring is hopeless

RV’25 Monitoring with HOAX, Di Stefano 9 / 10

Example: checking for Inf(S)

Execute this algorithm after every step:

Input : Det. complete automaton A; its current state q ∈ Q
Output: good, bad, ugly, or ⊥.

1 Comps← MINTRAPSETOF(q) # O(|Q|)
2 T ←

⋃
Comps # O(|Q|)

3 if T ⊆ S then return good # O(|S|)
4 if T ∩ S = ∅ then return bad # O(|S|)
5 if T is minimal then
6 if T \ S is transient then return good else return ugly

O(|S|+ |ES|) (sub-graph limited to S)

7 return ⊥ # No verdict in this step

• Good prefix ⇔ the run will be accepted

• Bad prefix ⇔ the run will be rejected
• X transient ⇔ every run of A leaves X infinitely often
• Ugly prefix ⇔ further monitoring is hopeless

RV’25 Monitoring with HOAX, Di Stefano 9 / 10

Example: checking for Inf(S)

Execute this algorithm after every step:

Input : Det. complete automaton A; its current state q ∈ Q
Output: good, bad, ugly, or ⊥.

1 Comps← MINTRAPSETOF(q) # O(|Q|)
2 T ←

⋃
Comps # O(|Q|)

3 if T ⊆ S then return good # O(|S|)
4 if T ∩ S = ∅ then return bad # O(|S|)
5 if T is minimal then
6 if T \ S is transient then return good else return ugly

O(|S|+ |ES|) (sub-graph limited to S)

7 return ⊥ # No verdict in this step

• Good prefix ⇔ the run will be accepted
• Bad prefix ⇔ the run will be rejected

• X transient ⇔ every run of A leaves X infinitely often
• Ugly prefix ⇔ further monitoring is hopeless

RV’25 Monitoring with HOAX, Di Stefano 9 / 10

Example: checking for Inf(S)

Execute this algorithm after every step:

Input : Det. complete automaton A; its current state q ∈ Q
Output: good, bad, ugly, or ⊥.

1 Comps← MINTRAPSETOF(q) # O(|Q|)
2 T ←

⋃
Comps # O(|Q|)

3 if T ⊆ S then return good # O(|S|)
4 if T ∩ S = ∅ then return bad # O(|S|)
5 if T is minimal then
6 if T \ S is transient then return good else return ugly

O(|S|+ |ES|) (sub-graph limited to S)

7 return ⊥ # No verdict in this step

• Good prefix ⇔ the run will be accepted
• Bad prefix ⇔ the run will be rejected
• X transient ⇔ every run of A leaves X infinitely often

• Ugly prefix ⇔ further monitoring is hopeless

RV’25 Monitoring with HOAX, Di Stefano 9 / 10

Example: checking for Inf(S)

Execute this algorithm after every step:

Input : Det. complete automaton A; its current state q ∈ Q
Output: good, bad, ugly, or ⊥.

1 Comps← MINTRAPSETOF(q) # O(|Q|)
2 T ←

⋃
Comps # O(|Q|)

3 if T ⊆ S then return good # O(|S|)
4 if T ∩ S = ∅ then return bad # O(|S|)
5 if T is minimal then
6 if T \ S is transient then return good else return ugly

O(|S|+ |ES|) (sub-graph limited to S)

7 return ⊥ # No verdict in this step

• Good prefix ⇔ the run will be accepted
• Bad prefix ⇔ the run will be rejected
• X transient ⇔ every run of A leaves X infinitely often
• Ugly prefix ⇔ further monitoring is hopeless

RV’25 Monitoring with HOAX, Di Stefano 9 / 10

Conclusion

• Configurable tool to execute HOA automata
• Scriptable behaviour through Hooks API
• (Best-effort) monitoring of any acceptance condition

Future work:

• Performance improvements
• Possibly enabled by Python/cPython evolution

• DSL to script hooks within configuration
• Go beyond Booleans?

Try HOAX today!

$ pipx install hoax

$ uv tool install hoax

https://github.com/lou1306/hoax

RV’25 Monitoring with HOAX, Di Stefano 10 / 10

https://github.com/lou1306/hoax

Conclusion

• Configurable tool to execute HOA automata
• Scriptable behaviour through Hooks API
• (Best-effort) monitoring of any acceptance condition

Future work:

• Performance improvements
• Possibly enabled by Python/cPython evolution

• DSL to script hooks within configuration
• Go beyond Booleans?

Try HOAX today!

$ pipx install hoax

$ uv tool install hoax

https://github.com/lou1306/hoax

RV’25 Monitoring with HOAX, Di Stefano 10 / 10

https://github.com/lou1306/hoax

