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Introduction: Reactive synthesis

• Problem instance given as an LTL formula φ

• APs of φ split into inputs and outputs
• Inputs controlled by adversarial environment
• Outputs controlled by “us”

Synthesis problem
Find a strategy (i.e. a Mealy machine) to choose outputs

such that every play satisfies φ

Realizability problem

Does such a strategy exist? ("/%)

"→ φ is realizable %→ φ is unrealizable

Infinite-state synthesis
Go beyond just Boolean variables
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Our approach

CEGAR-based synthesis, effective for full LTL specifications.

1. Predicate abstraction → finite abstract problem

2. Synthesise:
{

If successful, we are done"
If unrealisable we get a counterstrategy

3. Check counterstrategy:

{
if genuine, we are done%
if spurious, refine abstraction

4. Repeat on refined abstraction.

Main novelty:

• Liveness refinements to avoid enumeration
• Exponential reduction w.r.t predicates
• Acceleration (based on above)
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Our setting

Arena: A = ⟨V ,E,C, val0, δ⟩

• V : state variables (bools, integers, reals)
• E: environment APs (inputs), C: controller APs (outputs)
• val0: initial valuation of state variables
• δ : Val(V )× 2E∪C → Val(V ): transition function

Game: ⟨A, φ⟩

• φ ∈ LTL(E ∪ C ∪ PR)

• PR: the set of predicates over V to abstract sets of
valuations, e.g., G ((x = 0) ⇒ F (x = 5))

• Typically in form assumptions ⇒ guarantees
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Realisability modulo arena

• In each move: environment sets E and predicates, then
controller sets C, and finally the arena’s δ updates the
variable valuation.

Arena A: vali Arena A: δ(vali ,Ei ∪ Ci)
Ei ∪ Pri Ci

• Realisability: There is a Mealy Machine s.t. for each trace:
whenever ∀i .vali ⊨ Pri the LTL property holds.

• Unrealisability: There is a Moore Machine s.t. for each
trace: ∀i .vali ⊨ Pri and the property does not hold.
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Running (Toy) Example - Infinite Race

s0 s1

¬e inc

¬c inc ∧ ¬pause

e inc 7→ e pos := e pos+1 c inc ∧ ¬pause 7→ c pos := c pos+1

pause

V = {e pos : N = 0,
c pos : N = 0}

E = {e inc, pause}
C = {c inc}

Assumptions:
A. GF (s1 ∧ ¬pause)
Guarantees:
G. GF (s0 ∧ (c pos > e pos))
Goal: A =⇒ G

• Assumption: Environment must ∞ often be in s1 and not
block controller

• Guarantee: Controller must ∞ often move back to s0 with its
position (c pos) larger than the environment’s (e pos).

• Not encodable as deterministic Büchi game!
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How do we attack this problem? (1/2)

Arena A

LTL φ

Abstraction
Synthesis
α(A)⇒φ

"
Realizable

A∥Cs
concretizable?

Safety/Liveness
refinement

%
Unrealizable

α(A)

% counterstrategy Cs

"
controller

%
counterexample

"

• Abstract each transition t in terms of possible pre- and
corresponding post-states: α(t) ∈ 2Pr × 22Pr

• Combine into α(A) ∈ LTL(E ∪ C ∪ Pr)
• Soundly abstracts arena A.
• Fresh Boolean variable vp for each predicate p

Controller for abstract problem α(A) =⇒ φ is controller for
concrete problem =⇒ ⟨A, φ⟩ realizable
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How do we attack this problem? (2/2)

Arena A

LTL φ

Abstraction
Synthesis
α(A)⇒φ

"
Realizable

A∥Cs
concretizable?

Safety/Liveness
refinement

%
Unrealizable

α(A)

% counterstrategy Cs

"
controller

%
counterexample

"

• Invariant checking: Cs ∥ A ⊨ G(
∧

p∈Pr vp ⇐⇒ p)
• Cs chooses the original inputs, driving arena A.
• G(. . .) checks correctness of Cs’ predicate guesses

• Undecidable (but on benchmarks we never get stuck here).

If", then Cs is concrete counterstrategy. ⟨A, φ⟩ unrealisable

If%, then counterexample to concretizability.

If Cs not concretisable, this step always terminates
and the counterexample is finite.
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Safety Refinement

s0 s1

¬e inc

¬c inc ∧ ¬pause

e inc 7→ e pos := e pos+1 c inc ∧ ¬pause 7→ c pos := c pos+1

pause

Counterexample ce Arena Behaviour
CS Prog Vals Preds Triggered

state State Updates
q0 s0 e pos = c pos = 0 ¬(c pos > e pos)
q1 s1 e pos = c pos = 0 ¬(c pos > e pos) c pos := c pos + 1
q1 s1 e pos = 0; c pos = 1 ¬(c pos > e pos) c pos := c pos + 1

• Last state of ce, (Prj , valj), will contain at least one pr ∈ Prj
s.t. valj ̸⊨ pr .

• From ce we get a set of sequence interpolants1

• In our case, we initially get c pos − e pos = 1; we add to
abstraction to exclude this counterstrategy, and retry.

• More refinements → enumeration → non-termination

1McMillan, 2006
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Identifying terminating program loops from ce

s0 s1

¬e inc

¬c inc ∧ ¬pause

e inc 7→ e pos := e pos+1 c inc ∧ ¬pause 7→ c pos := c pos+1

pause

Counterexample ce Arena Behaviour
CS Prog Vals Preds Triggered

state State Updates
q0 s0 e pos = c pos = 0 ¬(c pos > e pos)
q1 s1 e pos = c pos = 0 ¬(c pos > e pos) c pos := c pos + 1
q1 s1 e pos = 0; c pos = 1 ¬(c pos > e pos) c pos := c pos + 1

• Does ce expose failed execution of a lasso in Cs?

• Yes! Self-loop in s1, triggering c pos := c pos + 1, and
expecting ¬(c pos > e pos) after each iteration.

• I.e., expecting while(¬(c pos > e pos)) c pos := c pos + 1
to not terminate. But it does! (Termination checking)
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Liveness refinements - Structural Loop Refinement

• Heuristically generalise precondition (maintaining
termination), true suffices:

while(¬(c pos > e pos)) c pos := c pos + 1

• LTL monitor that detects whe we enter/leave this loop ℓ:
• Initially not in loop: ¬inLoopℓ

• In loop iff (loop iteration or (in loop and stutter)):

G

 whileCondℓ ∧ loopBodyℓ

∨
inLoopℓ ∧ stutter

⇐⇒ X inLoopℓ


• And enforce its termination, or stable non-progress:

(GF¬inLoopℓ) ∨ FG(stutter ∧ inLoopℓ)

• Can also handle when loop body is more than 1 state

In our example, adding this to abstraction suffices to reach a
realizable verdict. (+ controller)
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Complexity and Decidability

The Elephant in the Room :)

Abstraction Exponential in no. of predicates |P|.
Finite Synthesis → 2EXPTIME-complete in |P|.

Concretisability checking → undecidable in general.
Liveness refinement → undecidable in general.

Can we optimise?

Yes, we can reduce the number of Bool variables introduced!

(Recall, each predicate p has a corresponding fresh boolean
variable vp in the finite synthesis problem)
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Binary Encoding of Numeric Predicates

• Massage each predicate into the form t ≤ c, where t is a
term over variables, and c a constant.

• Collect predicates over term t in Pt , and order them:
t ≤ c0, t ≤ c1, ..., t ≤ cn−1, s.t. ci < ci+1
(for LRA we also need t < c).

• These predicates partition the number line:

t ≤ c0

¬(t ≤ c0) ∧ t ≤ c1 ¬(t ≤ cn−2) ∧ t ≤ cn−1

¬(t ≤ cn−1)

c0 c1-∞ ∞cn−2 cn−1

...

• Can thus encode with log2(n + 1) vars instead of n vars
• e.g., given x ≤ 0, x ≤ 1, x ≤ 2, we just need 2 bits:

Partition Binary Encoding
x ≤ 0 00
¬(x ≤ 0) ∧ x ≤ 1 01
¬(x ≤ 1) ∧ x ≤ 2 10
¬(x ≤ 2) 11
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Binary Encoding – Complexity

t ≤ c0

¬(t ≤ c0) ∧ t ≤ c1 ¬(t ≤ cn−2) ∧ t ≤ cn−1

¬(t ≤ cn−1)

c0 c1-∞ ∞cn−2 cn−1

...

Let |Pt | the number of predicates over term t .

Abstraction
From 22

∑
t∈terms|Pt | to (

∏
t∈terms(|Pt |+ 1))2 SMT calls per transition.

Synthesis

From 22
∑

t∈terms|Pt | to 2
∏

t∈terms|Pt |+1.
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Acceleration

t ≤ c0

¬(t ≤ c0) ∧ t ≤ c1 ¬(t ≤ cn−2) ∧ t ≤ cn−1

¬(t ≤ cn−1)

c0 c1-∞ ∞cn−2 cn−1

...

• From t ≤ c0, strictly monotonically increasing the value of t
means ¬t ≤ cn−1 becomes true eventually.

• Dually for decreasing.

• For LRA, need to check that every change is bounded by
some value ϵ (for LIA, ϵ = 1).

Define tinc
def
= tprev < t and tdec

def
= t < tprev , then:

• GF tinc ⇒ GF (tdec ∨ ¬(t ≤ cn−1))

• GF tdec ⇒ GF (tinc ∨ (t ≤ c0))
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Experimental Design

Benchmarks (only LIA):

• Safe/Reach/Det. Büchi: 80 from literature + 1 new
• Hand-translation into equirealizable problems for our tool.
• LIA: Equivalent to ours → for numeric inputs, we have to add

extra states allowing arbitrary increment/decrement.
• Full LTL benchmark set: 14 new benchmarks

To be fair, we only compare with other tools on deterministic
Büchi objectives, (although the tools may accept other
objectives they will not reach verdict on Full LTL).

Comparison against raboniel, temos, rpgSolve, rpg-STeLA,
and tslmt2rpg+rpgSolve.

16Gb memory, 20 minute timeout, Intel i7-5820K CPU
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Our prototype implementation sweap2

• Handles LIA problems
• Relies on Strix for LTL synthesis, nuXmv for model/invariant

checking, CPAChecker for termination checking, MathSat for
SMT solving.

• Tool features:
• Outputs HOA controller/counterstrategy;
• Results verified against original arena (to protect against

possible bugs); and
• Finite-state model checking (either through described

approach, or immediate enumeration+binary encoding)

Configurations for experiments
• sweap → acceleration enabled, and
• sweaplazy → acceleration disabled.

2https://github.com/shaunazzopardi/sweap/
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Comparative Results - Realisability

Curve lower and more to the right is better.

0 10 20 30 40 50 60
Instances solved

0

2000

4000

6000

8000

10000

12000
C

um
ul

at
iv

e 
tim

e 
(s

)

Realisability (excl. novel LTL instances)

Our tool (synthesis)
Our tool, lazy (synthesis)
Rpg-stela (realisability)
Rpgsolve (realisability)
tslmt2rpg (realisability)

VASSAL@RV’25 LTL synthesis on infinite arenas, Azzopardi et al. 18 / 22



Comparative Results - Synthesis

Curve lower and more to the right is better.

0 10 20 30 40 50 60
Instances solved

0

1000

2000

3000

4000

5000
C

um
ul

at
iv

e 
tim

e 
(s

)

Synthesis (excl. novel LTL instances)

Our tool
Our tool, lazy
Raboniel
Rpgsolve
tslmt2rpg

VASSAL@RV’25 LTL synthesis on infinite arenas, Azzopardi et al. 19 / 22



Evaluation - Full LTL benchmarks

Name Realisable Time (s)
Sacc S

arbiter 2.77 4.90
arbiter-failure 2.04 1.98

elevator 2.53 15.92
infinite-race 1.98 4.38

infinite-race-u unreal. – –
infinite-race-unequal-1 6.50 –
infinite-race-unequal-2 – –

reversible-lane-r 7.39 17.53
reversible-lane-u unreal. 18.70 4.54

rep-reach-obst-1d 2.47 9.04
rep-reach-obst-2d 3.85 38.51
rep-reach-obst-6d – –

robot-collect-v4 16.51 –
taxi-service 39.26 68.02

taxi-service-u unreal. 4.14 3.50
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Evaluation - Failure Analysis

Some abstractions get too big for synthesis (OOM, timeout)

• With SemML we can solve more, but need more memory.

Unrealisable problems with no counterstrategies

• Can also happen w/ det. Büchi (1 problem no tool can solve)
• Solve dualized problem

Lazy approach often misses liveness refinements we can infer
from acceleration
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Future Work

• Similar approaches to model checking rely on safety
refinements + discovering ranking functions:3

• Relatively complete; a similar result here if we can encode
ranking functions in LTL?

• Ideally: a finite synthesis tool that allows direct inputting of
arena, à la GR[1].

• Direct manipulation of game graph, instead of rebuilding it
every iteration. (SemML?)

• Tool “interface” improvements:
• Support for LRA
• Native support for numeric inputs and outputs
• Automatic translation from RPG and TSL, and back (WIP)

• Plan common benchmark format with other teams (WIP)

3Balaban, Pnueli, and Zuck, 2005
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