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Kurzfassung

Rekonfigurierbare Multiagentensysteme (MAS) erfordern maßgeschneiderte Modellie-
rungswerkzeuge, die dynamische Agenteninteraktionen und Systemrekonfiguration er-
fassen können. Der ReCiPe-Formalismus bietet domänenspezifische Abstraktionen für
die Spezifikation solcher Systeme, während das R-CHECK-Framework eine domänen-
spezifische Sprache (DSL) auf der Grundlage von ReCiPe mit Werkzeugen für den
Modellentwurf, die grundlegende Simulation und die Verifizierung durch Modellprüfung
implementiert. Die begrenzten statischen semantischen Überprüfungen, die derzeit in
R-CHECK implementiert sind, lassen jedoch ein erhebliches Potential für Fehler zur Lauf-
zeit offen. In diesem Beitrag wird der Entwurf und die Implementierung eines statischen
Typsystems für R-CHECK vorgestellt, das auf einer strengen Formalisierung der Typi-
sierungsregeln für primitive Typen, Operatoren, Prozesse und Spezifikationen in LTOL
basiert. Das Typsystem deckt domänenspezifische Konstrukte wie agentenspezifische
Definitionen, Beobachtungen und quantifizierte Formeln ab. Die Implementierung, die
auf den Langium- und Typir-Frameworks basiert, erweitert den bestehenden R-CHECK-
Workflow und die Integration in Visual Studio Code (VS Code), um eine frühzeitige
Erkennung von Typfehlern und ein klares, domänenspezifisches Feedback an die Benutzer
zu ermöglichen. Eine Evaluierung zeigt die Fähigkeit des Typprüfers, Fehler zu erkennen
und potenziell unerwünschte Modellierungspraktiken hervorzuheben, was das Vertrauen
in die Korrektheit des Modells erhöht. Dieser Beitrag hilft Domänenexperten bei der
Entwicklung rekonfigurierbarer MAS-Modelle mit größerem Vertrauen in deren Sicherheit
und Konsistenz.
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Abstract

Reconfigurable multi-agent systems (MASs) require tailored modelling tools that can
capture dynamic agent interactions and system reconfiguration. The ReCiPe formalism
provides domain-specific abstractions for specifying such systems, while the R-CHECK
framework implements a domain-specific language (DSL) based on ReCiPe with tooling
for model design, basic simulation, and verification through model checking. However,
the limited static semantic checks currently implemented in R-CHECK leave significant
potential for errors to manifest at runtime. This paper presents the design and imple-
mentation of a static type system for R-CHECK, grounded in a rigorous formalization
of typing rules for primitive types, operators, processes, and specifications in LTOL.
The type system covers domain-specific constructs such as agent-specific definitions,
observations, and quantified formulas. The implementation, based on the Langium and
Typir frameworks, extends the existing R-CHECK workflow and Visual Studio Code (VS
Code) integration to provide early detection of type errors and clear, domain-focused
feedback to users. An evaluation demonstrates the ability of the type checker to catch
errors and highlight potentially undesirable modelling practices, improving confidence in
model correctness. This contribution helps domain experts develop reconfigurable MASs
models with greater assurance in their safety and consistency.
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CHAPTER 1
Introduction

Domain-specific languages (DSLs) are languages that are specifically designed to offer a
high level of expressiveness and ease of use when working and solving problems within
a specific domain (set of similar problems). This is achieved by trading off the general
expressiveness and broad feature set typical of general-purpose languages (GPLs) such
as TypeScript.

In this work, the domain of interest is the modelling of reconfigurable multi-agent systems
(MASs), which are systems of multiple interacting agents that autonomously perceive
and act upon their environment to achieve individual and collective goals. Reconfigurable
MASs are capable of altering their structure, such as agent roles and communication
pathways, in response to changes in the environment or internal system requirements,
leading to better flexibility and adaptability [1]. Because this is a highly specialized
domain, using a GPL would burden the modeller with low-level details during the
formalization of MASs or the reasoning about them.

ReCiPe is a formal specification language used to serve precisely this domain of recon-
figurable MASs. It provides domain-specific abstractions for defining agents and their
behaviour [1]. Due to the inherent property of DSLs such as ReCiPe to operate on a
confined domain, it is likely that the user base of such a language is small when compared
to that of a well-spread GPL. Additionally, it is common that the users of DSLs have their
professional background in the language’s application domain rather than informatics or
language theory. As a result, these users typically have a reduced general experience with
formal languages or GPLs which can lead to difficulties when working with the DSL.

To address this issue, it is critical to provide the user with effective tools that streamline
the workflow when writing specifications in a DSL. In the case of ReCiPe, these tools
are provided in the form of R-CHECK. The R-CHECK framework supports a high-level
programming language based on ReCiPe, which includes features to help design, simulate,
and verify ReCiPe models. At the time of writing, R-CHECK mainly verifies the syntax
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1. Introduction

of the provided program and only includes a few basic semantic checks for verifying
program correctness [1]. As a result, working with R-CHECK remains prone to a variety
of errors, particularly type errors.

In this paper, the design and implementation of a static type system for ReCiPe is
presented. The implementation is seamlessly integrated into R-CHECK. By catching
type errors early and providing precise feedback, this extension significantly enhances
the modelling workflow within R-CHECK, enabling domain experts to more effectively
construct reconfigurable MAS specifications.

What follows is a brief introduction to the topics and tools that are relevant to this work
in Chapter 2. Chapter 3 provides a formal definition of the proposed type system. In
Chapter 4 follows a description on how the type system is implemented in the existing
codebase. In Chapter 5 a simple evaluation of the type checker is presented. Lastly,
Chapter 6 provides concluding remarks and outlines directions for future work.
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CHAPTER 2
Background

This chapter introduces five key topics. It starts with an overview of type checking,
followed by a brief introduction to the ReCiPe formalism and the R-CHECK framework.
The chapter concludes with a mention of the tools used to integrate the type system into
R-CHECK. The aim is not to give a complete overview of these aspects, but rather to
provide the necessary context for the chapters to follow.

2.1 Type Checking
The grammar of a language defines its basic constructs and the rules for how these
constructs can interact with each other. During the process of parsing, a piece of text
written in the language is compared to the grammar. The text is split into basic elements,
and a new data structure, the abstract syntax tree (AST), is created. The AST is a
hierarchical tree structure that represents the logical structure of the source text, making
it easier to analyse or manipulate during further processing.

In the broader context of program analysis, which focuses on examining a program to
verify its correctness and enhance its reliability before execution, the parsing process
is just one part of the compilation workflow. Program analysis can be further divided
into three distinct phases. The first phase, lexical analysis, reads the raw source text
and groups characters into tokens such as identifiers, literals, and operators. The second
phase, syntax analysis, takes the token stream and constructs an AST according to
the language grammar while reporting any syntax errors encountered. The last phase,
semantic analysis, performs various validations to ensure the meaning of the program is
consistent with the rules of the language [2].

type checking refers to the phase of the semantic analysis in which a program is examined
against a set of rules known as the type system. In this context, types are defined as
collections of values that share certain properties. A type may be defined by membership
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2. Background

1 // The type of x is inferred from the expression ’true’,
2 // which types to Boolean.
3 const x = true;
4
5 // The type of sum is inferred from the return type of + operator
6 // which is number. The types of the operands 3 and 5 are both number.
7 const sum = 3 + 5;

Listing 2.1: Type inference examples in TypeScript.

in a specific set, for example a valid range of integer values or the literals true and
false belonging to the Boolean type of TypeScript. Types can also be defined by their
structure such as in class definitions with their members. These types may be predefined
by the programming language or introduced by the programmer. A type system also
defines rules that determine valid interactions among types and specifies the warnings or
errors presented to the programmer for violations of those rules [3].

In principle, all the checks of semantic analysis may run dynamically (at program
execution), but identifying errors such as type errors at compile time rather than runtime
significantly lowers the risk for unexpected crashes of the compiled program. The early
detection of type errors during compile time is known as static typing. Additionally, a
language with a type system that can be used to assign unambiguous type information
to each expression is referred to as strongly typed. The purpose of all validation steps is
to detect errors before the program is executed [2].

With the type system in place, each node of the AST gets annotated with type information.
Literals get their type from their respective value set membership. Identifiers (variables)
are either annotated with a fixed type upon declaration or get their type using type
inference, which is the process of deducing a type for an expression from its usage and
context rather than from an explicit declaration [2, 3]. Since Langium and R-CHECK are
both implemented in TypeScript, the following examples in this section are also provided
using TypeScript to align with the underlying language of the project. For a variable
declaration in TypeScript that reads const x = true; the type of x is inferred from the
expression that is assigned. In this case the identifier x gets annotated with the type
Boolean of the Boolean literal true.

Type inference also applies to function calls, requiring the types of input parameters to
match the signature of the formal parameters. The return type is inferred either from an
explicit definition of a return type or from the type of the expression used in the return
statement [3]. Note that the same logic applies to built-in operators. For example, in
TypeScript one might write const sum = 3 + 5;. The compiler then infers that sum has
type number, since the + operator accepts two number operands and returns a number, as
illustrated in Listing 2.1.

Type coercion, often called type casting, refers to the conversion of a value from one
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2.2. The ReCiPe Formalism

1 // The number variable year gets converted to string
2 // in order to be combined with the rest of the template literal string.
3 const year: number = 2025;
4 const message = ‘The current year is ${year}.‘;

Listing 2.2: Implicit type casting of number to string in TypeScript.

type to another. This conversion may occur implicitly, when the compiler automatically
transforms values according to contextual rules, or explicitly, when the programmer
invokes a cast [2]. In TypeScript, a number value may be implicitly converted to a string

type when used within a template literal, as presented in Listing 2.2.

The type checking phase is completed once the compiler has exhaustively analysed the
AST and either confirmed that all expressions satisfy the type system of the language or
identified any type errors. At that point, the compiler can either advance to subsequent
stages or report the detected errors to the developer [3].

2.2 The ReCiPe Formalism
ReCiPe is a formalism for modelling systems of communicating agents. Informally, agents
are constructs that hold an internal state as a set of variables and that define an infinitely
repeating process of message send and receive statements. Agents in ReCiPe support
four different kinds of communication structures referred to as basic processes.

Among these basic processes the send and receive processes operate on channels, which
are a fixed set of names defined by the user. The channelled send process can be used to
communicate to any number of agents by specifying a channel. A send-guard expression
may be used to filter the possible receivers of the message. The message body consists of
a set of assignment to message variables. The send process may also include an update
statement that updates the internal state of the agent. The basic receive process serves
as the counterpart to send and specifies only a channel from which to receive and an
update statement to process the received data. Generally, both send and receive processes
are blocking, meaning that an agent cannot proceed to its next statement until a send
process has been received by at least one other agent or a receive process has obtained
a message on its specified channel. The exception to this is the communication on the
special channel broadcast, denoted by the * symbol, which is globally available to all
agents and enables non-blocking send processes.

On the other hand, the supply and get processes allow for direct communication between
agents. The supply and get processes both require specifying a location as well as data
and update fields with the same structure as those of the channel-based basic processes.
In a supply process an agent names the location under which it supplies data and defines
a set of variables as the message body. The location may be myself, which means the
agent supplies data under its own name, or it may be any, allowing any agent to accept
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2. Background

the supply. The get process acts as the counterpart to supply and similarly includes a
location specifier together with a data field and an update statement. The location in
this case may be the name of a specific agent, given the receiver knows the identity of
the supplier. Otherwise, it may be a Boolean expression that filters incoming supplies so
that any matching supply is processed. More precisely, only supplies that satisfy this
condition and that specified the any location are considered, and exactly one of these
supplies will be processed. The existence of data and update fields in the get process
indicates that direct communication requires the receiver to return data to the supplier,
thereby enabling a two-way exchange. It is important to note that the data part in the
get process is optional, but if a supply expects data in its update statement, then a get
will only match if it provides the expected data.

The complete behaviour of agents is formalized by combining basic processes. It may
be specified that processes execute in a specific order, or that the agent chooses non-
deterministically among several basic processes. In addition, it is possible to specify that
any process or combination of processes repeats indefinitely. By combining sequencing,
choice, and repetition, the complex behaviour of agents can be fully formalized.

A system can then be formed by creating named instances of the specified agents. The
initial state (local variables) of agent instances can also be restricted in the system
definition [1].

2.2.1 Specifications in LTOL

The final component of a ReCiPe model is a list of specifications, which define the desired
properties of the system when it is executed. These specifications are written in LTOL,
the temporal logic used by the R-CHECK framework. LTOL is a temporal logic language
that describes the expected behaviour of a system as it evolves over time. It is mostly
based on Linear Temporal Logic (LTL) [4] and therefore includes the standard temporal
operators: next (X), until (U), weak until (W), globally (G), finally (F), and release (R).

In addition to these standard operators, LTOL introduces two observation-based operators:
the “possibly” operator, also known as the diamond (⟨⟨o⟩⟩), and the “necessarily” operator,
also known as the box ([[o]]). In both cases, o represents an observation, which is an
expression over a message exchange. An observation may describe conditions such as a
message being sent over the broadcast channel, or may predicate on the sender, recipients,
or contents of the message. Informally, if o is an observation and φ is an LTOL property,
the expression ⟨⟨o⟩⟩φ states that, at a given point in time, a message satisfying o occurs
and, after that, φ must hold. On the other hand, [[o]]φ states that, at a given point
in time, if a message satisfying o occurs, then φ must hold afterwards. If the message
does not occur, the entire formula is true (logical implication). This observation-based
extension gives LTOL great expressive power to specify precisely the kinds of interactions
expected as the system evolves.

LTOL also includes quantifiers that allow properties to be specified over sets of agents.
It is possible to state that a property must hold for every agent of a certain type (forall)
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2.3. The R-CHECK Framework

or for at least one such agent (exists) [1].

The main objective of the ReCiPe formalism is to determine whether these LTOL
specifications hold for a given model. This model checking process is performed by the
R-CHECK framework.

2.3 The R-CHECK Framework

Building on the semantics of ReCiPe, R-CHECK defines the grammar for a high-level
programming language. R-CHECK programs begin with a prelude declaring global
variables and data structures. The data structures include the definitions of additional
channel names or enumerations of model-specific properties. Global variables fall into
two categories based on their intended usage: message-structure variables and property
variables. Message-structure variables (or simply, message variables) define the data
that agents may put in the data part of their statements, specifying the structure of the
messages they can exchange. Property variables fulfill a role similar to that of interfaces
in object-oriented GPLs and define shared properties that agents can reason about. Each
agent defined within a model has its own interpretation of the property variables defined
through its relabel expressions. Whenever agents need to predicate about other agents,
for example in send guards, they use predicates over property variables so they do not
need to know the local variables of other agents and so that predicates remain valid
across different types of agents. Both message and property variables must be specified
with a fixed data type, which means that variables in R-CHECK are strongly typed.
The prelude concludes with the definition of guards, which are predicate functions over
property variables which can be used as send-guards within process definitions. These
global members of a ReCiPe program are available for every agent in the model.

After the prelude come the agent definitions. Each agent is defined with a distinct name,
a set of local variables, a predicate expressing initial restrictions, a section to relabel
property-variables, an agent-level receive-guard and, finally, the infinitely repeated process
of the agent. The receive guard specifies what channels the agent wants to participate
to. Multiple instances of agents and their initial restrictions can then be used to form a
system. The last part of an R-CHECK program is a series of specifications, reasoning
about the behaviour of the system.

Additionally, R-CHECK provides an integrated toolkit for designing, simulating, and
verifying systems of agents. The features regarding the design process of an R-CHECK
program are built into a Visual Studio Code (VS Code) extension which enables syntax
highlighting and other editor features like “go to definition”. The extension also provides
commands to visualize agents as state automata, explore behaviours (simulate), and
model check a system.

The architecture of R-CHECK builds upon Langium to perform parsing and basic
semantic analysis of a source file. This is followed by a translation process of the AST to
specifications that can be processed by the model checker nuXmv. This step is performed
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by a custom translation layer written in Java. The model checker then yields the desired
results about the design of the agent system [1].

2.4 Langium
Langium is a toolkit by the Eclipse Foundation for engineering DSLs. Langium is written
in TypeScript and the project aims to ease the development of DSLs in a web-based
technology stack [5]. According to the project proposal of Langium, the functionality
of the framework is derived from the preceding framework Xtext [6], meaning that the
core principles of the tool are well known and thoroughly tested [7]. For editor support,
Langium can be used to deploy a language server that supports the Language Server
Protocol (LSP) for features such as validation, auto-completion, and cross-reference
navigation [8]. The LSP is supported by the most relevant text editors and IDEs at the
time of writing such as Visual Studio, VS Code, Atom, Sublime Text, and JetBrain IDEs
such as IntelliJ IDEA and PyCharm [8].

In a Langium project, a DSL is formalised within a grammar file using Langium’s
grammar language. The grammar file holds information about both the concrete syntax,
which defines how the language constructs are written and structured in text form, and
the abstract syntax, which specifies the hierarchical structure of language elements and
their properties when translated to the AST. This AST is then used for all following
operations such as cross-reference resolution and validation [5].

Listing 2.3 shows a part of the grammar definition of R-CHECK as an example to
illustrate the architecture of Langium. The basic elements in a Langium grammar
definition are terminals and parser rules. For example, terminals such as ID describe
valid identifiers, while WS matches and discards whitespace using the hidden keyword.
Parser rules such as Enum and Case show how these terminals and keywords combine
to define higher-level constructs. The Enum rule specifies that an enum starts with the
keyword ’enum’, followed by an identifier (name=ID), and contains one or more Case

elements separated by commas. The inclusion of the Case parser rule within the Enum rule
illustrates how the abstract syntax is defined through the grammar language by nesting
and structuring related elements. The entry Model rule describes how multiple elements,
like Enum, MsgStruct, or Agent, can be grouped together and combined to describe the
complete structure of a valid R-CHECK file. Each parser rule is given a name that
determines how the parsed elements are organised in the resulting AST [9].

When the grammar is compiled using the Langium CLI, it is transformed into TypeScript
files that define the data structures used to create an AST during the parsing of a program.
It is important to note that while the AST generation includes information about cross-
references, which allow parts of the AST, such as an identifier used in one place, to
point to its corresponding declaration elsewhere in the same file or across files. When a
program is parsed to form an AST, the AST still contains gaps where cross-references
are expected. These gaps have to be resolved during a cross-reference resolution step. In
Langium, this is typically achieved through a combination of a scope computation and a

8



2.5. Typir and Typir-Langium

1 grammar RCheck
2
3 entry Model:
4 //Global section
5 (
6 (enums+=Enum)
7 | (’message-structure’ ’:’ msgStructs+=MsgStruct (’,’ msgStructs+=

MsgStruct)*)
8 | (’property-variables’ ’:’ propVars+=PropVar (’,’ propVars+=PropVar)

*)
9 | guards+=Guard

10 )*
11 //Agents and instantiation
12 (agents+=Agent)*
13 ’system’ ’=’ (system+=Instance (’||’ system+=Instance)*)
14 // Specs
15 (’SPEC’ specs+=Ltol ’;’?)*
16 ;
17 // [...]
18 Enum:
19 ’enum’ name=ID ’{’ cases+=Case (’,’ cases+=Case)* ’}’;
20
21 Case: name=ID;
22 // [...]
23 hidden terminal WS: /\s+/;
24 terminal ID: /[_a-zA-Z][\w_]*/;

Listing 2.3: Excerpt from the grammar definition of R-CHECK.

scope provider, which together collect possible candidates and determine the valid target
for each reference [9].

After resolving the cross-references, the AST is complete and can be further validated to
ensure the semantic correctness of the program. Validators can be implemented using
the features of the AST, and integrated into the parser by registering them in the model
definition of the language. The version of Langium used for this project is version 3.4.0.

2.5 Typir and Typir-Langium

As mentioned before, an important part of semantic analysis is type checking. Typir is a
set of utilities that simplify type checking operations on an AST. The package is developed
and maintained by TypeFox, the same company that also develops Langium [10], and
makes it straightforward to integrate a type-checking validator into a Langium project [9].
Typir’s core features include methods for easily defining primitives, functions, classes, and
operators. Additionally, it provides type-checking services such as tests for assignability
and equality, type inference and conversion (both implicit and explicit), as well as
subtyping.

9



2. Background

Typir-Langium is a subpackage of Typir that allowes a Typir-based type checker to be
integrated into a Langium project without major setup. Typir can then directly be used
with the data structures that make up a Langium AST [10]. The version of Typir and
Typir-Langium used for this project is version 0.2.0.
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CHAPTER 3
Formalization of the ReCiPe Type

System

In this chapter, the type system of ReCiPe is formally introduced. The typing rules
are expressed using a variant of the natural deduction notation used by Cardelli [11].
An inference rule consists of a set of premises P1, . . . , Pn above a horizontal line and a
conclusion C below it:

P1 . . . Pn

C
Inference rule

C
Axiom

This notation means that the conclusion holds exactly when all premises hold. In the
special case of an axiom, the premises are omitted entirely to indicate that the conclusion
is unconditionally valid. Additionally, rules may be composed into proof trees by using
the conclusion of one rule as a premise of another. Doing so produces a derivation tree
whose root is the final judgment. The leaves of this tree are either axioms or inference
rules whose premises consist solely of basic logical expressions, which can be validated
directly without invoking further rules.

Sometimes, when multiple conclusions share the same premises, they are written one
underneath the other within a single inference rule. While not a standard, this notation
is used for compactness and clarity, allowing related derivations to be represented more
concisely.

Throughout this type system, two distinct styles of inference rules are used to express
different judgments:

P1 . . . Pn

Γ1, . . . ,Γn ⊢ x ⇒ (Γ′
1, . . . ,Γ′

n)
P1 . . . Pn

Γ1, . . . ,Γn ⊢ x : τ

11



3. Formalization of the ReCiPe Type System

Every rule begins with a list of sets Γ1, . . . ,Γn called typing contexts (also called envi-
ronments) and the turnstile ⊢, which is read as “under contexts Γ1, . . . ,Γn, it is inferred
that.” In the first form, x ⇒ (Γ′

1, . . . ,Γ′
n) means that processing x produces the new

contexts (Γ′
1, . . . ,Γ′

n). The second form, x : τ , asserts that x is well typed and has type
τ . Notably, within this style, the symbol ⋄ is used as a special case of x : τ . When
x : ⋄ is used, it denotes that x is well typed without introducing an additional data type
for x. Finally, the typing contexts may be omitted to indicate that the conclusion is valid
regardless of the context.

A typing context is simply the bookkeeping structure that is used to build up information
about the existing types, classes, functions, and variables as the type checker traverses
the AST. In the following definitions, four typing contexts with distinct purposes are
used. Let ∆ be a set of existing types. Let Γ be a set of mappings from identifiers (e. g.
variables) to their inferred type. Let Ψ be a set of mappings from guard names to an
ordered list of types (the types of their parameters). Let Σ be a set of mappings from
agent names to an internal typing context that follows the structure of Γ and holds
mappings from variable names to their inferred type.

Before proceeding to the concrete typing rules, a few auxiliary definitions are introduced
that will simplify notation in the remainder of this chapter.

1. Let R be a relation from S to T . The domain of R written dom(R), is the set of
all s ∈ S for which there exists some t ∈ T with (s, t) ∈ R [12].

2. Again, let R be a relation from S to T . The notation R(s) is equal to t for all
(s, t) ∈ R. If s /∈ dom(R) then R(s) is undefined and translates to ‘false’ as a
premise.

3. Similarly to the notation of the type assertion x : τ , a relation between types
written τ1 <: τ2 specifies that τ1 is a subtype of τ2. When read in reverse, τ2 is a
supertype of τ1.

4. The notation [x :: tail] denotes a non-empty list structure in which x is the first
element (the head) and tail represents the remainder of the list. The empty list is
denoted by ϵ.

3.1 Typing Rules

3.1.1 Boolean Literals

Rule 3.1 defines two axioms for the Boolean literals true and false. Under any context,
these symbols type to bool.

⊢ true : bool ⊢ false : bool (3.1)
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3.1.2 Location Literals

Similarly, rule 3.2 defines the axioms for location literals.

⊢ myself : location ⊢ any : location (3.2)

3.1.3 Channel Literals

The same can be done for channel literals in rule 3.3.

⊢ chan : channel ⊢ * : channel (3.3)

3.1.4 Number Literals

The symbol int used in rule 3.4 denotes the set of valid symbols that are specified by the
integer terminal of the ReCiPe grammar. The rule specifies that, in any context, n types
to a range ([l..u]) with the upper and lower bound both set to n under the premise
that n is a valid integer terminal in ReCiPe.

n ∈ int
⊢ n : [n..n] (3.4)

3.1.5 Subtype Relations

While number literals will type to range, variables can still be specified explicitly to be
of type int within variable declarations. The int type can also be inferred from any
range as specified in rule 3.5. In other words, every valid range is a subtype of int.

l ≤ u

⊢ [l..u] <: int (3.5)

Similarly, rule 3.6 states that every range type [l1..u1] is a subtype of another range
type [l2..u2] exactly when the interval of [l1..u1] is contained within the interval of
[l2..u2] (expressed in the conditions l2 ≤ l1 and u1 ≤ u2).

l2 ≤ l1 u1 ≤ u2
⊢ [l1..u1] <: [l2..u2] (3.6)

Additionally, every type is a subtype of itself and a subtype of the type any (rule 3.7).

⊢ τ <: τ ⊢ τ <: any (3.7)
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Rule 3.8 states that every expression e of type τ ′ also types to τ if τ ′ is a subtype of
τ . This rule allows a type to be promoted to its supertype whenever required in the
subsequent rules.

∆,Γ ⊢ e : τ ′ ⊢ τ ′ <: τ
∆,Γ ⊢ e : τ (3.8)

3.1.6 Boolean Operators

Boolean operators, both unary and binary, require all of their operands a and b to type
to bool in order to infer bool for the resulting expression. Rule 3.9 below captures
both cases in a single formulation. The left formula covers the unary Boolean negation !,
as well as the temporal operators and quantifiers described in Section 2.2.1. The right
formula defines the binary Boolean operators conjunction &, disjunction |, implication
->, and bi-implication <->, along with the temporal operators presented in Section 2.2.1.
In all cases, the operands must type to bool, and the result is also assigned type bool.

⊢ a : bool
⊢ !a : bool
⊢ F a : bool
⊢ G a : bool
⊢ X a : bool
⊢ forall(a) : bool
⊢ exists(a) : bool

⊢ a : bool ⊢ b : bool
⊢ a & b : bool
⊢ a | b : bool
⊢ a -> b : bool
⊢ a <-> b : bool
⊢ a U b : bool
⊢ a R b : bool
⊢ a W b : bool
⊢ <<a>>b : bool
⊢ [[a]]b : bool

(3.9)

3.1.7 Arithmetic Operators

Basic arithmetic operators are defined for both int and range types.

Rule 3.10 specifies that the result of an arithmetic operation will type to int if both of
the operands a and b type to int.

⊢ a : int ⊢ b : int
⊢ a + b : int
⊢ a - b : int
⊢ a * b : int
⊢ a / b : int

(3.10)
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For operations performed purely using range types, the principles of interval arithmetic
are employed to infer a resulting range [l..u]. The lower bound l and upper bound u
of the resulting range are calculated based on the input ranges a and b. In each case,
the bounds are determined by applying the respective operation to the bounds of a and b,
ensuring the resulting range is the narrowest range that contains all possible outcomes of
the operation [13]. These operators are formalized within rules 3.11 through 3.14.

⊢ a : [la..ua] ⊢ b : [lb..ub] l = la + lb u = ua + ub

⊢ a + b : [l..u] (3.11)

⊢ a : [la..ua] ⊢ b : [lb..ub] l = la − ub u = ua − lb
⊢ a - b : [l..u] (3.12)

⊢ a : [la..ua] ⊢ b : [lb..ub]
p1 = la · lb p2 = la · ub

p3 = ua · lb p4 = ua · ub

l = min(p1, p2, p3, p4) u = max(p1, p2, p3, p4)
⊢ a * b : [l..u] (3.13)

Note that, in rule 3.14, the result of the divisions is rounded down (⌊x⌋) to perform
integer division.

⊢ a : [la..ua] ⊢ b : [lb..ub]
d1 = ⌊la ÷ lb⌋ d2 = ⌊la ÷ ub⌋
d3 = ⌊ua ÷ lb⌋ d4 = ⌊ua ÷ ub⌋
l = min(d1, d2, d3, d4) u = max(d1, d2, d3, d4)

⊢ a / b : [l..u] (3.14)

3.1.8 Comparison Operators

Comparisons type to bool when both operands a and b type to int. The supported
comparison operators are presented in rule 3.15. As is common practice within program-
ming languages, the grammar of R-CHECK defines the symbols <= and >= for ≤ and ≥
respectively.

⊢ a : int ⊢ b : int
⊢ a < b : bool
⊢ a <= b : bool
⊢ a > b : bool
⊢ a >= b : bool

(3.15)

15



3. Formalization of the ReCiPe Type System

3.1.9 Equivalence

The subtype relation between every type and the type any presented in rule 3.7 allows for
easy formulation of rule 3.16 to support equivalence expressions. The type system hereby
allows the comparison between two arbitrary typed expressions. While the symbols =
and == are both used to assert equivalence, != is used to assert inequality.

⊢ a : any ⊢ b : any
⊢ a = b : bool
⊢ a != b : bool
⊢ a == b : bool

(3.16)

3.1.10 Assignments

Assignment statements as specified in rule 3.17 also leverage subtype relations to express
that the receiving symbol a has to type to a supertype of the assigned value b in order to
form a well-typed assignment. In ReCiPe, assignments are represented as either relabel
statements (<-) or standard assignment statements (:=), both of which are treated
equivalently for type checking purposes.

⊢ a : τa ⊢ b : τb τb <: τa

⊢ a := b : ⋄
⊢ a <- b : ⋄

(3.17)

For future reference, rule 3.18 extends the assignment logic to lists of assignments. As a
base case, the empty list ϵ is always well-typed. For non-empty lists, the rule ensures
that the first assignment of the list, either a := b or a <- b, is well-typed using rule 3.17
for single assignments. The tail of the list, tail, is recursively checked for validity to
ensure that the entire list of expressions is well-typed.

⊢ ϵ : ⋄
⊢ a := b : ⋄ ⊢ tail : ⋄

⊢ [a := b :: tail] : ⋄
⊢ a <- b : ⋄ ⊢ tail : ⋄

⊢ [a <- b :: tail] : ⋄ (3.18)

3.1.11 Field Access

Fields, meaning variables and other symbols defined within the typing context Γ, will
type to their stored type τ when used. Rule 3.19 states that an expression x will type
to τ if the mapping x ↦→ τ is present in the typing context Γ. In certain scenarios, when
referencing the property variables of a model, the additional symbol @ must be prepended
in order to access the variable. For type checking purposes, both notation styles are
treated equivalently, as underlined by the fact that the two conclusions share the same
premise.
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Γ(x) = τ

Γ ⊢ x : τ
Γ ⊢ @x : τ

(3.19)

3.1.12 Guard Call

In ReCiPe, guard calls allow for evaluating Boolean expressions based on parameters.
Rule 3.20 formalizes the typing of guard calls. It asserts that for a guard g with parameter
types [τ1, . . . , τn] in Ψ, each argument ei must type to the corresponding type τi in the
context Γ. The result of a guard call is always of type bool.

Ψ(g) = [τ1, . . . , τn] Γ ⊢ ei : τi for i ∈ {1, . . . , n}
Γ,Ψ ⊢ g(e1, . . . , en) : bool (3.20)

3.1.13 Quantified Formulas

Each agent Ai (1 ≤ i ≤ n) in the quantified formula possesses a local context stored in Σ,
accessible via Σ(Ai). The notation

⋂︁n
i=1 Σ(Ai) denotes the intersection of the contexts

for all specified agent types, capturing precisely those fields x ↦→ τ that are common to
every Ai. To reference this shared set of fields with the identifier k, the context Γk is
constructed by adding a mapping (k-x) ↦→ τ for each such field. The identifiers k-x are
constructed by concatenating the identifier k, a dash (-), and each variable name x of the
common fields of every Ai. This additional context, combined with the original context
Γ, is then employed to type-check the expression e, which must have Boolean type. This
works for both the forall and foreach keywords, as formalized in rule 3.21.

Γk = {(k-x) ↦→ τ | x ↦→ τ ∈
⋂︁n

i=1 Σ(Ai)} (Γ ∪ Γk),Ψ,Σ ⊢ e : bool
Γ,Ψ,Σ ⊢ forall k: A1| . . .|An . e : bool
Γ,Ψ,Σ ⊢ exists k: A1| . . .|An . e : bool

(3.21)

3.1.14 Specifications

For completeness, the rule 3.22 states that a list of specifications is well typed, if every
specification of the list types to a Boolean. It also defines the base case for an empty list
of specifications ϵ, which is unconditionally considered well-typed.

Γ,Ψ,Σ ⊢ ϵ : ⋄
Γ,Ψ,Σ ⊢ tail : ⋄ Γ,Ψ,Σ ⊢ e : bool

Γ,Ψ,Σ ⊢ [SPEC e :: tail] : ⋄ (3.22)
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3.2 Typing Context
With most of the validity rules defined, the construction of the typing contexts can now
begin. In the subsections 3.2.1 through 3.2.6, several rules are defined that describe the
composition of the typing contexts.

3.2.1 Enumeration Types

Recall that ∆ is a set of type names, including primitive (pre-defined) and user-defined
types and that Γ is a set of mappings from variable names to their types. Rule 3.23
presents the base case for building up ∆ and Γ. This rule states that, under the contexts
of ∆ and Γ, when an empty list of symbols ϵ is encountered, two contexts are returned
that are identical to the original contexts.

∆,Γ ⊢ ϵ ⇒ (∆,Γ) (3.23)

Enum types are the only user-defined types to consider in ReCiPe. When encountered,
enums are checked for validity in the context (∆,Γ) using rule 3.24. The premises of the
rule specify several conditions for valid enums. First, the names of the enum values must
be distinct. This means that no two enum values (literals) can share the same name.
Second, the enum values must be distinct from any existing identifiers in the variable
context Γ, ensuring that no conflicts arise with previously defined variables. Moreover,
the rule ensures that the enum name E either is not already present in ∆ or, in the special
case of the enum channel, the pre-defined type channel can be extended rather than
requiring it to be absent from ∆.

(E = channel ∨ E /∈ ∆)
vi ̸= vj for i, j ∈ {1, . . . , n}, i < j vi /∈ dom(Γ) for i ∈ {1, . . . , n}

∆,Γ ⊢ enum E {v1, . . . , vn} : ⋄ (3.24)

To augment the contexts ∆ and Γ with all enum definitions, rule 3.25 is used. It states
that given the context of ∆ and Γ, processing a list of enum declarations gives two new
contexts, ∆′ and Γ′. The rule proceeds by induction on the list. In the first step, the tail
of the list tail is elaborated under the original contexts, yielding intermediate contexts ∆t

and Γt. In the second step, the head declaration enum E {v1, . . . , vn} is validated within
these intermediate contexts using rule 3.24. In the final step, the updated contexts are
obtained by adding E to ∆t to form ∆′ and by extending Γt with the mappings vi ↦→ E
for all i = 1, . . . , n to form Γ′. Under these premises, the rule produces the resulting
contexts (∆′,Γ′).

∆,Γ ⊢ tail ⇒ ∆t,Γt ∆t,Γt ⊢ enum E {v1, . . . , vn} : ⋄
∆′ = ∆t ∪ {E} Γ′ = Γt ∪ {vi ↦→ E}n

i=1

∆,Γ ⊢ [enum E {v1, . . . , vn} :: tail] ⇒ (∆′,Γ′) (3.25)
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3.2.2 Variables

Similar to the inclusion of enum types into the environment, variable mappings are
incorporated into the variable context Γ through a recursive process over a list of variable
declarations. This process relies on Rules 3.26 and 3.27, which respectively handle the
base case and the inductive step.

Rule 3.26 captures the base case where the list of variable declarations is the empty list
ϵ. In this situation, no new mappings are introduced and the original context Γ remains
unchanged.

∆,Γ ⊢ ϵ ⇒ Γ (3.26)

Rule 3.27 defines the inductive step for processing a non-empty list of variable declarations
of the form [x : τ :: tail]. First, the tail of the list tail is processed recursively to yield an
intermediate context Γtail. Next, the head declaration is considered valid if the variable
x is not already declared within Γtail, and its type τ exists in the current typing context
∆. If these conditions hold, a new context Γ′ is produced by extending Γtail with the
mapping x ↦→ τ .

∆,Γ ⊢ tail ⇒ Γtail x /∈ dom(Γtail)
(τ ∈ ∆ ∨ (τ = [l..u] ∧ l ≤ u)) Γ′ = Γtail ∪ {x ↦→ τ}

∆,Γ ⊢ [x : τ :: tail] ⇒ Γ′ (3.27)

3.2.3 Guards

In ReCiPe, guards serve as named Boolean predicates that may be parametrized with
typed variables. Recall that Ψ is a set of mappings from guard names to an ordered list
of types. In order to later type-check the signature of the guard calls, their declarations
are added to the guard context Ψ. The process of checking and incorporating guards
into Ψ is handled by three rules, beginning with the rule for guard validity (Rule 3.28),
followed by the base case for an empty list of declarations (Rule 3.29), and concluding
with the recursive rule for a non-empty list of guard declarations (Rule 3.30).

Rule 3.28 checks a single guard declaration against a set of conditions within the current
context (∆,Γ,Ψ). A guard declaration is considered valid if the guard name g is not
already declared in Ψ, all types τi of the parameters pi are present in the typing context
∆, none of the parameter names pi is already used as an identifier within Γ, and the
parameter names are pairwise distinct.

g /∈ dom(Ψ) τi ∈ ∆ for i ∈ {1, . . . , n}
pi /∈ Γ for i ∈ {1, . . . , n} pi ̸= pj for i, j ∈ {1, . . . , n}, i < j

∆,Γ,Ψ ⊢ guard g(p1 : τ1, . . . , pn : τn):= e; : ⋄ (3.28)
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Rule 3.29 defines the base case for processing a list of guard declarations. If the list is
the empty list ϵ, the guard context Ψ remains unchanged.

∆,Γ,Ψ ⊢ ϵ ⇒ Ψ (3.29)

Lastly, rule 3.30 describes the recursive case for processing a list of guard declarations. It
first processes the tail of the list tail to obtain an intermediate context Ψtail. The guard
parameters (in essence, a list of variable declarations) are used to form a temporary
context Γguard, re-using the variable declaration rule (Rule 3.27). Then, the head
declaration guard g(p1 : τ1, . . . , pn : τn) := e; is validated using rule 3.28. Finally, the
expression e in the guard body is type-checked under the context Γguard and must be
of type bool. If all of these conditions are satisfied, the resulting guard context Ψ′ is
formed by extending Ψtail with the mapping of the guard name to the signature of its
parameter list g ↦→ [τ1, . . . , τn].

∆,Γ,Ψ ⊢ tail ⇒ Ψtail ∆,Γ ⊢ [p1 : τ1, . . . , pn : τn] ⇒ Γguard

∆,Γ,Ψtail ⊢ guard g(p1 : τ1, . . . , pn : τn):= e; : ⋄
Ψ′ = Ψtail ∪ {g ↦→ [τ1, . . . , τn]} Γguard ⊢ e : bool

∆,Γ,Ψ ⊢ [guard g(p1 : τ1, . . . , pn : τn):= e; :: tail] ⇒ Ψ′ (3.30)

3.2.4 Processes

Formally, each process consist of a unique name n, a Boolean guard predicate ψ, and
takes one of several atomic forms (send !, receive ?, GET or SUPPLY). However in the
implementation this is not the case, as the name n may be left out. In this case the
variable context Γ simply is not extended. Rule 3.31 shows how processing an atomic
action extends the variable context Γ with a mapping from the process name n to Boolean
if the identifier n is not already present in Γ.

n /∈ dom(Γ) Γ′ = {n ↦→ bool}
Γ ⊢ n:{ψ} c!(g)(D)[U] ⇒ Γ′

Γ ⊢ n:{ψ} c?[U] ⇒ Γ′

Γ ⊢ n:{ψ} GET@(l)(D)[U] ⇒ Γ′

Γ ⊢ n:{ψ} SUPPLY@(l)(D)[U] ⇒ Γ′

(3.31)

Since processes can be combined using several operators (;, +, rep, ()), the formulas in
rule 3.32 are used to propagate the addition of process names to the context Γ through a
complex process definition. Here, p and q each denote a process expression.
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Γ ⊢ p ⇒ Γp Γp ⊢ q ⇒ Γ′

Γ ⊢ p; q ⇒ Γ′

Γ ⊢ p + q ⇒ Γ′

Γ ⊢ p ⇒ Γ′

Γ ⊢ rep p ⇒ Γ′

Γ ⊢ (p) ⇒ Γ′ (3.32)

Before extending the typing context, processes must be checked for validity (⋄). The
following rules 3.33 through 3.36 follow a similar principle to the rules used to gather the
names of the processes. Rule 3.33, rule 3.34, and rule 3.35 are used to type-check the
atomic actions. In this case, some actions cannot share the same premises because of the
structural differences or differing typing restrictions.

All type checking of processes, and indeed every subsequent type check, is carried out
under the context (Γ,Ψ) to enable the use of guards. In a typical ReCiPe model, guards
appear only in the send guard expression g of a send action, which types to Boolean
(Γ,Ψ ⊢ g : bool). In the formal definition presented here, however, guards may be used
wherever the syntax allows.

Γ,Ψ ⊢ ψ : bool Γ,Ψ ⊢ c : channel Γ,Ψ ⊢ g : bool Γ,Ψ ⊢ D : ⋄ Γ,Ψ ⊢ U : ⋄
Γ,Ψ ⊢ n:{ψ} c!(g)(D)[U] : ⋄
Γ,Ψ ⊢ n:{ψ} c?[U] : ⋄

(3.33)

Γ,Ψ ⊢ ψ : bool Γ,Ψ ⊢ l : bool | location Γ,Ψ ⊢ D : ⋄ Γ,Ψ ⊢ U : ⋄
Γ,Ψ ⊢ n:{ψ} GET@(l)(D)[U] : ⋄ (3.34)

Γ,Ψ ⊢ ψ : bool Γ,Ψ ⊢ l : location Γ,Ψ ⊢ D : ⋄ Γ,Ψ ⊢ U : ⋄
Γ,Ψ ⊢ n:{ψ} SUPPLY@(l)(D)[U] : ⋄ (3.35)

The formulas in rule 3.36 is again used to propagate through complex process definitions.

Γ ⊢ p : ⋄ Γ ⊢ q : ⋄
Γ ⊢ p; q : ⋄
Γ ⊢ p + q : ⋄

Γ ⊢ p : ⋄
Γ ⊢ rep p : ⋄
Γ ⊢ (p) : ⋄

(3.36)

3.2.5 Agents

In ReCiPe, each agent A is declared with a unique name and consists of four compo-
nents: an initialization condition A.init, a relabelling map A.relabel, a receive-guard
predicate A.receive-guard, and a repeating process A.repeat.

Recall that Σ is a set of mappings from agent names to typing contexts following the
structure of Γ. Before an agent can be added to Σ it must satisfy the validity constraints
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given by rule 3.37. Rule 3.37 ensures that A does not already appear in the agent
environment Σ, that its initialization and receive-guard expressions both have Boolean
type, that its list of relabelling assignments is valid under (Γ,Ψ), and that its process
A.repeat type-checks under (Γ,Ψ).

A /∈ dom(Σ)
Γ ⊢ A.init : bool Γ,Ψ ⊢ A.relabel : ⋄
Γ ⊢ A.receive-guard : bool Γ,Ψ ⊢ A.repeat : ⋄

∆,Γ,Ψ,Σ ⊢ agent A : ⋄ (3.37)

The agent environment Σ is constructed by processing a sequence of agent declarations.
Rule 3.38 handles the base case of an empty list by leaving Σ unchanged.

∆,Γ,Ψ,Σ ⊢ ϵ ⇒ Σ (3.38)

When a non-empty list of agents is encountered, rule 3.39 describes how to extend
Σ. First, the tail of the list tail is evaluated to yield Σtail. Next, the local variable
declarations A.local are elaborated under Γ to produce a local context Γloc, after which
the agent A itself is checked for validity under (∆, (Γ∪Γloc),Ψ,Σ). The repeating process
A.repeat is then processed under (∆, (Γ ∪ Γloc),Ψ) to obtain Γrep as described in the
section above. Finally, the updated environment Σ′ is formed by uniting Σtail with a
mapping from A to the union of its local variable context Γloc, its repeat-process context
Γrep, and the implicit automaton-state field of type int.

∆,Γ,Ψ,Σ ⊢ tail ⇒ Σtail ∆,Γ ⊢ A.local ⇒ Γloc

∆, (Γ ∪ Γloc),Ψ,Σ ⊢ agent A : ⋄ ∆, (Γ ∪ Γloc),Ψ ⊢ A.repeat ⇒ Γrep

Σ′ = Σtail ∪ {A ↦→ (Γloc ∪ Γrep ∪ {automaton-state ↦→ int})}
∆,Γ,Ψ,Σ ⊢ [agent A :: tail] ⇒ Σ′ (3.39)

3.2.6 System

The system definition in a ReCiPe model is a list of agent instances, split by the parallel
composition operator (||). A valid instantiation as described in rule 3.40 is formed by
calling the agent name A as a constructor with two parameters: the instance name i
and an initialization constraint expression e. The instance name must not exist in the
typing context Γ and the instantiation expression must type to Boolean under the agent’s
internal context Σ(A).

i /∈ dom(Γ) Σ(A) ⊢ e : bool
Γ,Σ ⊢ A(i, e) : ⋄ (3.40)
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As for other context definitions, a base case for the recursive process is provided in
rule 3.41.

Γ,Σ ⊢ ϵ ⇒ Γ (3.41)

Using rule 3.42, the list of all instances is evaluated to form the typing context Γ′. The
tail of the list tail is evaluated to form Γtail, leaving only the instance A(i, e) to be
processed. Rule 3.40 is employed to check the validity of the instance. Next Γi is formed
by concatenating the instance name i, a dash (-), and each variable name x in the agent’s
internal context Σ(A) to create identifiers i-x, each of which is mapped to the same
type τ that x had in Σ(A). Finally, the resulting context Γ′ is defined by extending the
tail context Γtail with the mappings in Γi and the binding {i ↦→ location}, thereby
assigning the instance name i the location type.

Γ,Σ ⊢ A(i, e) : ⋄ Γi = {(i-x) ↦→ τ | x ↦→ τ ∈ Σ(A)}
Γ,Σ ⊢ tail ⇒ Γtail Γ′ = Γi ∪ {i ↦→ location} ∪ Γtail

Γ,Σ ⊢ [A(i, e) :: tail] ⇒ Γ′ (3.42)

3.3 Model Rule
Bringing everything together, the entry point of the type system is given by rule 3.43.
It states that a ReCiPe model M is well typed (⊢ M : ⋄) precisely when its full typing
context (∆,Γ,Ψ,Σ) is built up in sequence from the model’s enumeration declarations
M.enums, its global variable declarations M.msgStructs ·M.propVars, its guard dec-
larations M.guards, its agent declarations M.agents, and finally its system definition
M.system.

The initial typing contexts Γinit, Ψinit, and Σinit are declared empty while ∆init is
prefilled with ReCiPe’s built-in types. The final premise then requires that the model’s
specifications M.spec type-check under the completed context (Γ,Ψ,Σ), using rule 3.22.

∆init = {bool,int,location,channel} ∆init,Γinit ⊢ M.enums ⇒ ∆,Γenum

Γinit = {} ∆,Γenum ⊢ M.msgStructs ·M.propVars ⇒ Γvars

Ψinit = {} ∆,Γvars,Ψinit ⊢ M.guards ⇒ Ψ
Σinit = {} ∆,Γvars,Ψ ⊢ M.agents ⇒ Σ
Γ,Ψ,Σ ⊢ M.spec : ⋄ Γvars,Σ ⊢ M.system ⇒ Γ

⊢ M : ⋄
(3.43)
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CHAPTER 4
Implementation in R-CHECK

This chapter contains a quick summary of the process of integrating the theoretical type
system into the existing R-CHECK framework. First, the Typir-based type checker
implementation is explored. What follows are some details about the integration of the
type checker into the Langium architecture.

4.1 Typir-Based Type Checker
The functions provided by the Typir library enable an easy translation of the formal rules
of the type system to a functional implementation. Primitive types can be defined within
the initialization function of the type checker class. Additionally, it may hold definitions
of operators, static inference rules, and type constraints on certain language features.
The type inference for user defined types like enums happens in a function that is evoked
once for each AST node during the tree walk. This function also handles other dynamic
rules like guard and agent definitions with their inference rules for members and calls.

To illustrate this translation from the formal type system to a concrete implementation,
Listing 4.1 shows how the primitive type channel is implemented using the factory
utilities provided by Typir. The primitive type is created with the name "channel" and
static inference rules are applied to the new type before finishing the configuration chain
using .finish(). Inference rules can either be defined by passing a type guard into the
filter parameter of the .inferenceRule() call, or by specifying the language keys of AST
nodes and additionally supplying the matching parameter with a function that acts as a
predicate on the specified nodes. Specifically, the inference rules at lines 4–5 in Listing 4.1
specify that AST nodes of type ChannelRef and Broadcast will unconditionally be of type
channel. Examining the grammar definition for these nodes in Listing 4.2 shows that
the two inference rules correspond exactly to the axioms presented within subsection 3.1.3
of the formal type system definition. The inference rule at lines 6–10 in Listing 4.1
corresponds to the rule for building the variable context Γ within subsection 3.2.2. The
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4. Implementation in R-CHECK

1 const typeChannel = typir.factory.Primitives.create({
2 primitiveName: "channel",
3 })
4 .inferenceRule({ filter: isChannelRef })
5 .inferenceRule({ filter: isBroadcast })
6 .inferenceRule({
7 languageKey: [Local, Param, MsgStruct, PropVar],
8 matching: (node: Local | Param | MsgStruct | PropVar) =>
9 node.customType?.ref?.name === "channel",

10 })
11 .inferenceRule({
12 languageKey: Enum,
13 matching: (node: Enum) => node.name === "channel",
14 })
15 .finish();

Listing 4.1: Implemenation of the primitive type channel using the factory utility of
Typir.

1 BaseExpr infers CompoundExpr:
2 // [...]
3 | {infer ChannelRef} currentChannel=’chan’
4 // [...]
5 | {infer Broadcast} value="*"
6 // [...]
7 ;

Listing 4.2: R-CHECK grammar definitions for nodes related to the channel type.

implementation ensures that any variable declared in a Local, Param, MsgStruct, or
PropVar node is assigned the type channel if its referenced customType has the name
"channel". The last inference rule at lines 11–14 in Listing 4.1 has no direct counterpart
within the formal type system. The rule exists to infer the type channel in an enum
definition node with the name "channel". The propagation of the channel type to
the literals of the enum definition is handled elsewhere. For a complete listing of the
implementation, please refer to appendix (page 49).

When an inconsistency or violation is detected during type inference, the type checker
generates structured messages that include a clear description of the issue, a reference to
the affected language node and property, and a severity level. Each message distinguishes
between errors and warnings. Errors indicate that the program is ill-typed and cannot
proceed while warnings highlight potential logical issues that do not prevent execution.
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4.2. Langium Integration

4.2 Langium Integration
As described earlier, the original R-CHECK pipeline performs parsing of the ReCiPe
grammar, construction of AST, resolution of cross-references and basic structural valida-
tions, and finally the translation of the validated model into nuXmv specifications. The
static type checker is inserted immediately after the basic semantic validations and before
any model-to-code transformation takes place. At that point the parser has produced a
fully resolved AST, Langium has identified all syntax and structural errors, but no type
information has yet been enforced.

To enable type checking, several targeted grammar modifications were necessary. These
changes fall into three categories. The fist category are changes that added or updated
the identifiers of parser rule properties in order to reference these properties during type
checking. The second category include the prevention of ambiguities within parser rules
that formerly defined an ID terminal instead of a cross-reference to another parser rule or
re-used identifiers for different symbols. The third category involves structural changes
to the grammar that introduce abstract rules, allowing related parser rules to be grouped
under a common concept. This makes it possible to refer to multiple concrete rules
collectively during implementation. The complete diff of the grammar changes can be
found in the appendix (page 69).

The type checker itself integrates with Langium by adding a new service class to
the type AddedServices of the language module file. In the case of R-CHECK, the
field typir of type TypirLangiumServices<RCheckAstType> was added to
RCheckAddedServices. The actual type system class RCheckTypeSystem implements the
interface LangiumTypeSystemDefinition<RCheckAstType> that is provided by the typir-
langium binding package. This class is then injected into the createRCheckModule

function according to the RCheckAddedServices type from before. The typir-langium
package also provides the matching function createTypirLangiumServices that returns
an instance of TypirLangiumServices<RCheckAstType>.

At this point, the type system is initialized together with the other validation services
that are implemented into Langium. Typir reports errors and warnings to Langium’s
build-in ValidationProblemAcceptor service, which in turn displays these messages like
the other messages already provided for parsing errors.
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CHAPTER 5
Evaluation

The following section will demonstrate the behaviour of the type checker in a multitude
of warning and error scenarios. Afterwards, the limitations of the implementation in its
current state will be highlighted in Section 5.2.

5.1 Demonstrative Examples
A minimal syntactically correct project will serve as a testing ground. The program, shown
in Listing 5.1, extends the enum channel with two additional communication methods
(literals). Next, the property variable friendly : bool is declared as a Boolean. The
sole agent within the model is defined with minimal examples for most of its properties.
Lastly, a system of two agents is defined, each without initial constraints (true).

Additionally, the testing setup employs VS Code as the code editor, with the R-CHECK
extension enabled. In its current form, the code in Listing 5.1 is well typed and the code
editor shows no warnings or errors. In the following sections, the program is altered with
ill-typed scenarios to showcase the capabilities of the type checker.

5.1.1 Primitive Types and Operators

Since many of the elements within ReCiPe type to Boolean, comparison operators
are often used. To produce a warning, the init field of the agent definition is set to
a semantically questionable value of 3 == true. When comparing the two literals of
differing types, the type checker issues a warning as shown in Figure 5.1. The warning
states, that the result of the comparison will be constant (false) because of the type
mismatch. One can see that the message also provides the inferred types of the operands
in the correct order, which is especially helpful when working with variables.

Another kind of type mismatch occurs when the operands of arithmetic operators such as
‘+’ do not have the correct type. To produce this error, the expression (1 + mood) == 1 is
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5. Evaluation

1 enum channel {radio, speaker}
2
3 property-variables: friendly : bool
4
5 agent Droid
6 local: status : int, mood : bool
7 init: true
8 relabel:
9 friendly <- mood

10 receive-guard: true
11 repeat: {true} *? [mood := true]
12
13 system = Droid(R2D2, true) || Droid(C3PO, true)

Listing 5.1: Minimalistic, syntactically correct ReCiPe model.

Figure 5.1: Comparison type mismatch warning.

Figure 5.2: Operand type mismatch error.

set as the agent’s initialization condition. An error message for this scenario can be seen
in Figure 5.2. Structurally similar error messages are provided for all other operators
that can be used within ReCiPe. This example also shows that the type of the variable
mood is correctly retrieved from the type context.

5.1.2 Assignments

Recall that ReCiPe provides two assignment operators: <- and :=. For type checking
purposes, both operators are processed identically. The relabel property of the agent is
updated to read friendly <- radio. The error shown in Figure 5.3 explains in detail
why this operation is not permitted.
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5.1. Demonstrative Examples

Figure 5.3: Invalid assignment operation error.

(a) Relabel wide range with narrow range. (b) Relabel narrow range with wide range.

Figure 5.4: Valid and invalid assignments between ranges.

The subtype relation of the integer and range types can also be showcased using assign-
ments. A variable of type int can be relabelled with an expression of type range but not
the other way around. Furthermore, a value of type 1..3 may be assigned to a variable
declared as 1..5, whereas the reverse assignment is disallowed. Figure 5.4 shows a valid
case (Figure 5.4a), alongside the invalid one (Figure 5.4b). To produce the illustrated
error, two new property variables have been introduced into the program: small : 1..3

and big : 1..5.

5.1.3 Integer and Range Arithmetic

Generally, the type checker allows arithmetic operations to be performed with both
integer and range values (or any combination thereof). For the range type, additional
static checks compute the resulting range bounds and emit warnings when a comparison
or assignment can never succeed or may exceed declared bounds.

Building upon the example presented in Figure 5.4, it can be shown that the range
bounds of entire expressions containing range and integer values will be inferred and
correctly compared to the type of the receiving variable. Suppose small is declared as
small : 1..3 and big as big : 1..5. The relabelling assignment small <- ((big + 1)

/ 2) type-checks successfully because adding one to any value in 1..5 and dividing by
two (integer division) always yields a result within the interval 1..3.

For comparisons, the checking of range bounds is used to warn the programmer about
static outcomes. An example is shown in Figure 5.5.
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5. Evaluation

Figure 5.5: Comparison between two ranges with no overlap warning.

Figure 5.6: Type errors for fields with predetermined types.

5.1.4 Agent, Process, and System

Certain parts of an agent definition, the repeating process of an agent, and the system
definition must use predetermined types. The type checker has simple conditions built in
for these parts of the program. The example in Figure 5.6 highlights some of the fields
that demand correctly typed expressions. In this case, errors arise from substituting the
expected Boolean expressions with the location literal myself. The only exception is
the symbol status in the message-receive instruction {myself} status? [mood := true],
where the usage of an identifier is statically enforced and the required type is channel.
Only the first error message is shown since the subsequent errors follow the same pattern.

5.1.5 Guards

As previously demonstrated, ReCiPe allows the use of user-defined functions called guards.
A very simple guard definition to use as an example would be guard foo(arg : int) :=

true;. The other alteration made to the example program is found within the agent
process, which now consists of a send command that reads repeat: {true} *! foo(1)

() [mood := true]. The guard is called within the message-send and produces no type
error, since the types of the parameter list of the declaration and the call match exactly.

When changing the number or the types of the parameters within either the guard
declaration or call, the type checker will present errors to the programmer. The error
messages for incorrect guard calls are shown in Figure 5.7. Figure 5.7a illustrates the
error produced when the number of arguments does not match the declaration, while
Figure 5.7b demonstrates an error caused by a mismatch of types for guard parameters.
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5.1. Demonstrative Examples

(a) Wrong number of parameters.

(b) Parameters with wrong types.

Figure 5.7: Type errors when working with guards.

5.1.6 Specifications

Similar to other fields of a ReCiPe model, specifications defined after the SPEC keyword
must type to Boolean. Unlike ordinary expressions, specifications allow the use of
additional temporal operators such as ‘next’ (X expr) or ‘diamond’ (<<expr>>expr). All
of these operators behave as unary or binary Boolean operators and will function similarly
to the operators that are described in the previous sections.

Since specifications can be used to reason about the inner workings of agents, the
programmer is able to access their internal members such as local variables or named
processes. The type checker is able to provide type safety in this scenario by inferring the
type of any expression consisting of an agent instance’s identifier followed by the name
of a local variable or process. For example, in the running example from Listing 5.1,
writing SPEC F R2D2-status == 1 is perfectly valid, since the type checker can infer the
type int of the local variable status.

ReCiPe also supports quantified formulas using the syntax SPEC forall x : Droid . F

x-status == 1. This is not only possible for a single agent type, but allows for reasoning
about a combination of multiple agent types. Suppose the example program is extended
with the agent definition in Listing 5.2.

Now, quantified formulas such as forall x : Droid | Robot can make use of both agent
types at once, forming a composite type. Recall that the agent type Droid has the two
local variables status : int, mood : bool. The agent type Robot shares the variable
status : int (in name and type), but has no property mood. Additionally, agents of type
Robot include a labelled process called ‘process’. Labelled processes can also be accessed
like local variables and type to Boolean. When now trying to access a field such as
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5. Evaluation

1 agent Robot
2 local: status : int
3 init: true
4 relabel:
5 friendly <- false
6 receive-guard: true
7 repeat: process: {true} *? []

Listing 5.2: Additional agent type for the example program.

Figure 5.8: Error when trying to access a field that is not present in an composite agent
type.

SPEC forall x : Droid | Robot . G x-status == 1 of the composite agent type, the
type checker will emit no warnings, since status is present (and is an int) in both Droid

and Robot. Should the programmer attempt to access a field that is only present in one
of the agents, the error presented in Figure 5.8 is displayed.

5.2 Limitations

In its current form, the implementation of the type system has a few limitations. Firstly,
the payload being processed during a send or receive process remains untyped. This
means that the programmer may specify a payload such as (status := 1) in a send
command, that will never be considered in a receive command on the same channel.
Such mismatched command pairs, while not causing runtime errors, will never allow a
message to be exchanged during execution. If not considered, this can potentially lead to
a deadlock, where no further message exchange is possible in a system.

Another aspect not enforced by the type system is the matching of send and receive
commands in general. Since channelled communication in ReCiPe is blocking, the system
may go into a deadlock state when all agents commence a send on a channel that no other
agent is willing to receive messages on. At present, there is no static analysis or warning
to alert the programmer to this possibility. Detecting these potential deadlocks without
resorting to intensive verification techniques such as model checking is an interesting
challenge.

A final limitation becomes apparent when initializing an agent (for example, with Droid

(R2D2, true)). Although the type checker requires the second argument to be a bool,
it performs no further semantic checks on that expression. In practice, an initialization
expression should refer only to local variables declared on the agent, but currently nothing
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5.2. Limitations

prevents arbitrary Boolean expressions from being used. This may be solved in the future
by a more in-depth analysis of the variables being referenced in these expressions.
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CHAPTER 6
Conclusion

6.1 Summary of Contributions
This work has presented the design and implementation of a static type system for the
ReCiPe formalism, fully integrated into the existing R-CHECK framework. The type
system formalizes rules for primitive types, operators, guards, and the key constructs
of ReCiPe, enabling early detection of type errors and supporting safer specification of
reconfigurable MASs. The integration with Typir and Langium demonstrates how formal
definitions can be systematically translated into practical tooling for domain experts.
The evaluation shows that the resulting type checker provides clear feedback for common
and subtle error scenarios, contributing to more robust modelling workflows.

6.2 Future Work
A key direction for future work is to implement more advanced consistency checks,
such as verifying payload alignment between send and receive processes and detecting
potential deadlocks caused by blocking channel communication. These improvements
would further strengthen the reliability and robustness of ReCiPe and R-CHECK for
designing reconfigurable MASs.
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Source Code

R-CHECK Type System

1 import { LangiumTypeSystemDefinition, TypirLangiumServices } from "typir-
langium";

2 import { Agent, Assign, AutomatonState, BinExpr, BinObs, Box, Diamond, Enum,
ExistsObs, Finally,

3 ForallObs, Get, Globally, Guard, GuardCall, isAgent, isAssign, isBinExpr,
isBinObs, isBoolLiteral,

4 isBox, isBroadcast, isCase, isChannelObs, isChannelRef, isDiamond, isEnum,
isExistsObs, isForallObs,

5 isGet, isGuard, isInstance, isLiteralObs, isLocal, isLtolMod, isLtolQuant,
isMsgStruct, isMyself,

6 isNeg, isNumberLiteral, isParam, isPropVar, isRange, isReceive, isRelabel,
isSend, isSenderObs,

7 isSupply, isUMinus, Local, MsgStruct, Neg, Next, Param, PropVar,
QualifiedRef, RCheckAstType,

8 Receive, Relabel, Send, Supply, SupplyLocationExpr, UMinus } from "./
generated/ast.js";

9 import { assertUnreachable, AstNode } from "langium";
10 import { InferOperatorWithMultipleOperands, InferOperatorWithSingleOperand,
11 InferenceRuleNotApplicable, NO_PARAMETER_NAME, Type, TypirServices,
12 ValidationProblemAcceptor, isClassType } from "typir";
13 import { getClassDetails, getTypeName, intersectMaps, IntRange,

isComparisonOp, validateAssignment } from "./util.js";
14
15 export class RCheckTypeSystem implements LangiumTypeSystemDefinition<

RCheckAstType> {
16 onInitialize(typir: TypirLangiumServices<RCheckAstType>): void {
17 // Define the primitive types
18 const typeBool = typir.factory.Primitives.create({ primitiveName: "bool"

})
19 .inferenceRule({ filter: isBoolLiteral })
20 .inferenceRule({ filter: isLiteralObs })
21 .inferenceRule({ filter: isChannelObs })
22 .inferenceRule({ filter: isSenderObs })
23 .inferenceRule({
24 languageKey: [Local, Param, MsgStruct, PropVar],
25 matching: (node: Local | Param | MsgStruct | PropVar) => node.

builtinType === "bool",
26 })
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27 .finish();
28
29 const typeInt = typir.factory.Primitives.create({ primitiveName: "int" })
30 .inferenceRule({ filter: isNumberLiteral })
31 .inferenceRule({
32 languageKey: [Local, Param, MsgStruct, PropVar],
33 matching: (node: Local | Param | MsgStruct | PropVar) => node.

builtinType === "int",
34 })
35 .finish();
36
37 const typeRange = typir.factory.Primitives.create({
38 primitiveName: "range",
39 })
40 .inferenceRule({ filter: isRange })
41 .inferenceRule({
42 languageKey: [Local, Param, MsgStruct, PropVar],
43 matching: (node: Local | Param | MsgStruct | PropVar) => node.

rangeType !== undefined,
44 })
45 .finish();
46
47 typir.Conversion.markAsConvertible(typeRange, typeInt, "IMPLICIT_EXPLICIT

");
48
49 const typeLocation = typir.factory.Primitives.create({
50 primitiveName: "location",
51 })
52 .inferenceRule({
53 languageKey: [Local, Param, MsgStruct, PropVar],
54 matching: (node: Local | Param | MsgStruct | PropVar) => node.

builtinType === "location",
55 })
56 .inferenceRule({ filter: isMyself })
57 .inferenceRule({
58 languageKey: SupplyLocationExpr,
59 matching: (node: SupplyLocationExpr) => node.myself !== undefined ||

node.any !== undefined,
60 })
61 .inferenceRule({ filter: isInstance })
62 .finish();
63
64 const typeChannel = typir.factory.Primitives.create({
65 primitiveName: "channel",
66 })
67 .inferenceRule({ filter: isChannelRef })
68 .inferenceRule({ filter: isBroadcast })
69 .inferenceRule({
70 languageKey: [Local, Param, MsgStruct, PropVar],
71 matching: (node: Local | Param | MsgStruct | PropVar) => node.

customType?.ref?.name === "channel",
72 })
73 .inferenceRule({
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74 languageKey: Enum,
75 matching: (node: Enum) => node.name === "channel",
76 })
77 .finish();
78
79 const typeAny = typir.factory.Top.create({}).finish();
80
81 // Inference rule for binary operators
82 const binaryInferenceRule: InferOperatorWithMultipleOperands<AstNode,

BinExpr> = {
83 filter: isBinExpr,
84 matching: (node: BinExpr, name: string) => node.operator === name,
85 operands: (node: BinExpr) => [node.left, node.right],
86 validateArgumentsOfCalls: true,
87 };
88
89 // Binary operators
90 for (const operator of ["+", "-", "*", "/"]) {
91 typir.factory.Operators.createBinary({
92 name: operator,
93 signatures: [
94 { left: typeInt, right: typeInt, return: typeInt },
95 { left: typeRange, right: typeRange, return: typeRange },
96 { left: typeInt, right: typeRange, return: typeRange },
97 { left: typeRange, right: typeInt, return: typeRange },
98 ],
99 })

100 .inferenceRule({ ...binaryInferenceRule })
101 .finish();
102 }
103 for (const operator of ["<", "<=", ">", ">="]) {
104 typir.factory.Operators.createBinary({
105 name: operator,
106 signatures: [
107 { left: typeInt, right: typeInt, return: typeBool },
108 { left: typeRange, right: typeRange, return: typeBool },
109 { left: typeInt, right: typeRange, return: typeBool },
110 { left: typeRange, right: typeInt, return: typeBool },
111 ],
112 })
113 .inferenceRule(binaryInferenceRule)
114 .finish();
115 }
116 for (const operator of ["&", "|", "->", "U", "R", "W"]) {
117 typir.factory.Operators.createBinary({
118 name: operator,
119 signature: { left: typeBool, right: typeBool, return: typeBool },
120 })
121 .inferenceRule(binaryInferenceRule)
122 .finish();
123 }
124 // The syntax allows this only for numbers, but the type system allows it

for all types
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125 for (const operator of ["=", "!=", "=="]) {
126 typir.factory.Operators.createBinary({
127 name: operator,
128 signature: { left: typeAny, right: typeAny, return: typeBool },
129 })
130 .inferenceRule({
131 ...binaryInferenceRule,
132 validation: (node, _operatorName, _operatorType, accept, typir) =>

{
133 const leftType = typir.Inference.inferType(node.left);
134 const rightType = typir.Inference.inferType(node.right);
135 if (
136 (leftType === typeRange && rightType === typeInt) ||
137 (leftType === typeInt && rightType === typeRange) ||
138 (leftType === typeRange && rightType === typeRange)
139 ) {
140 const leftRange = IntRange.fromRangeExpr(node.left);
141 const rightRange = IntRange.fromRangeExpr(node.right);
142 if (!leftRange.intersects(rightRange)) {
143 accept({
144 message: ‘This comparison will always return ’${
145 node.operator === "!=" ? "true" : "false"
146 }’ as the ranges ’${leftRange}’ and ’${rightRange}’ have no

overlap.‘,
147 languageNode: node,
148 languageProperty: "operator",
149 severity: "warning",
150 });
151 }
152 } else {
153 typir.validation.Constraints.ensureNodeIsEquals(node.left, node

.right, accept, (actual, expected) => ({
154 message: ‘This comparison will always return ’${node.operator

=== "!=" ? "true" : "false"}’ as ’${
155 node.left.$cstNode?.text
156 }’ and ’${node.right.$cstNode?.text}’ have the different

types ’${getTypeName(
157 actual
158 )}’ and ’${getTypeName(expected)}’.‘,
159 languageNode: node,
160 languageProperty: "operator",
161 severity: "warning",
162 }));
163 }
164 },
165 })
166 .finish();
167 }
168 typir.factory.Operators.createBinary({
169 name: "<-",
170 signature: { left: typeAny, right: typeAny, return: typeAny },
171 })
172 .inferenceRule({
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173 filter: isRelabel,
174 matching: () => true,
175 operands: (node: Relabel) => [node.var.ref!, node.expr],
176 validation: (node, _operator, _functionType, accept, typir) =>
177 validateAssignment(node, getTypeName, accept, typir),
178 validateArgumentsOfCalls: true,
179 })
180 .finish();
181 typir.factory.Operators.createBinary({
182 name: ":=",
183 signature: { left: typeAny, right: typeAny, return: typeAny },
184 })
185 .inferenceRule({
186 filter: isAssign,
187 matching: () => true,
188 operands: (node: Assign) => [node.left.ref!, node.right],
189 validation: (node, _operator, _functionType, accept, typir) =>
190 validateAssignment(node, getTypeName, accept, typir),
191 validateArgumentsOfCalls: true,
192 })
193 .finish();
194 for (const operator of ["&", "|", "->", "<->"]) {
195 typir.factory.Operators.createBinary({
196 name: operator,
197 signature: { left: typeBool, right: typeBool, return: typeBool },
198 })
199 .inferenceRule({
200 filter: isBinObs,
201 matching: (node: BinObs, name: string) => node.operator === name,
202 operands: (node: BinObs) => [node.left, node.right],
203 validateArgumentsOfCalls: true,
204 })
205 .finish();
206 }
207 for (const operator of ["Diamond", "Box"]) {
208 typir.factory.Operators.createBinary({
209 name: operator,
210 signature: { left: typeBool, right: typeBool, return: typeBool },
211 })
212 .inferenceRule({
213 filter: isDiamond,
214 matching: (_node: Diamond, name: string) => name === "Diamond",
215 operands: (node: Diamond) => [node.obs, node.expr],
216 validateArgumentsOfCalls: true,
217 })
218 .inferenceRule({
219 filter: isBox,
220 matching: (_node: Box, name: string) => name === "Box",
221 operands: (node: Box) => [node.obs, node.expr],
222 validateArgumentsOfCalls: true,
223 })
224 .finish();
225 }
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226
227 // Inference rule for unary operators
228 type UnaryExpression = UMinus | Neg | Finally | Globally | Next |

ForallObs | ExistsObs;
229 const isUnaryExpression = (node: AstNode): node is UnaryExpression => {
230 return isUMinus(node) || isNeg(node) || isLtolMod(node) || isForallObs(

node) || isExistsObs(node);
231 };
232 const unaryInferenceRule: InferOperatorWithSingleOperand<AstNode,

UnaryExpression> = {
233 filter: isUnaryExpression,
234 matching: (node: UnaryExpression, name: string) => node.operator ===

name,
235 operand: (node: UnaryExpression) => node.expr,
236 validateArgumentsOfCalls: true,
237 };
238
239 // Unary operators
240 typir.factory.Operators.createUnary({
241 name: "-",
242 signatures: [
243 { operand: typeInt, return: typeInt },
244 { operand: typeRange, return: typeRange },
245 ],
246 })
247 .inferenceRule(unaryInferenceRule)
248 .finish();
249 for (const operator of ["!", "F", "G", "X", "forall", "exists"]) {
250 typir.factory.Operators.createUnary({
251 name: operator,
252 signature: { operand: typeBool, return: typeBool },
253 })
254 .inferenceRule(unaryInferenceRule)
255 .finish();
256 }
257
258 // Handle variable references
259 typir.Inference.addInferenceRulesForAstNodes({
260 Ref: (languageNode) => {
261 const ref = languageNode.variable.ref;
262 if (isLocal(ref)) {
263 return ref;
264 } else if (isCase(ref)) {
265 return ref.$container;
266 } else if (isParam(ref)) {
267 return ref;
268 } else if (isMsgStruct(ref)) {
269 return ref;
270 } else if (isPropVar(ref)) {
271 return ref;
272 } else if (isSend(ref)) {
273 return InferenceRuleNotApplicable;
274 } else if (isReceive(ref)) {
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275 return InferenceRuleNotApplicable;
276 } else if (isGet(ref)) {
277 return InferenceRuleNotApplicable;
278 } else if (isSupply(ref)) {
279 return InferenceRuleNotApplicable;
280 } else if (isInstance(ref)) {
281 return ref;
282 } else if (ref === undefined) {
283 return InferenceRuleNotApplicable;
284 } else {
285 assertUnreachable(ref);
286 }
287 },
288 PropVarRef: (languageNode) => {
289 const ref = languageNode.variable.ref;
290 if (isPropVar(ref)) {
291 return ref;
292 } else {
293 return InferenceRuleNotApplicable;
294 }
295 },
296 QualifiedRef: (languageNode) => {
297 const instance = languageNode.instance.ref;
298 if (isInstance(instance)) {
299 // Case already handled in class declaration
300 return InferenceRuleNotApplicable;
301 } else if (isLtolQuant(instance)) {
302 if (instance.kinds.some((k) => k.ref === undefined)) {
303 throw new Error("Not a valid agent instance.");
304 }
305
306 const agentFields = instance.kinds.map((k) => {
307 const agentType = typir.Inference.inferType(k.ref!);
308
309 if (agentType instanceof Type) {
310 if (isClassType(agentType)) {
311 return agentType.getFields(false);
312 } else {
313 throw new Error("Encountered unexpected non-class type.");
314 }
315 } else if (agentType instanceof Array) {
316 throw new Error("Encountered duplicate class type.");
317 } else {
318 assertUnreachable(agentType);
319 }
320 });
321
322 const intersection = intersectMaps(agentFields);
323 const variableType = intersection.get(languageNode.variable.

$refText);
324
325 if (variableType === undefined) {
326 // Field does not exist on agent intersection

55



327 typir.validation.Collector.addValidationRule((node, accept) => {
328 if (node === languageNode) {
329 accept({
330 languageNode: node,
331 languageProperty: "variable",
332 severity: "error",
333 message: ‘Property ’${languageNode.variable.$refText}’ does

not exist on type ’${instance.kinds
334 .map((k) => k.ref?.name)
335 .join(" | ")}’.‘,
336 });
337 }
338 });
339 return typeAny;
340 } else {
341 return variableType;
342 }
343 } else if (instance === undefined) {
344 return InferenceRuleNotApplicable;
345 } else {
346 assertUnreachable(instance);
347 }
348 },
349 ChannelExpr: (languageNode) => {
350 if (languageNode.bcast !== undefined) {
351 return typeChannel;
352 } else if (languageNode.channel?.ref !== undefined) {
353 return languageNode.channel.ref;
354 } else {
355 return InferenceRuleNotApplicable;
356 }
357 },
358 GetLocationExpr: (languageNode) => languageNode.predicate,
359 SupplyLocationExpr: (languageNode) => {
360 const location = languageNode.location?.ref;
361 if (location !== undefined) {
362 return location;
363 } else {
364 return InferenceRuleNotApplicable;
365 }
366 },
367 });
368
369 const validateCmdHeader = (
370 node: Send | Receive | Get | Supply,
371 accept: ValidationProblemAcceptor<AstNode>,
372 typir: TypirServices<AstNode>
373 ) => {
374 typir.validation.Constraints.ensureNodeIsEquals(node.psi, typeBool,

accept, (actual, expected) => ({
375 message: ‘Type mismatch in command guard expression: expected ’${

getTypeName(
376 expected
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377 )}’, but got ’${getTypeName(actual)}’.‘,
378 languageProperty: "psi",
379 languageNode: node,
380 }));
381 };
382 const validateChannelExpr = (
383 node: Send | Receive,
384 accept: ValidationProblemAcceptor<AstNode>,
385 typir: TypirServices<AstNode>
386 ) => {
387 typir.validation.Constraints.ensureNodeIsEquals(node.chanExpr,

typeChannel, accept, (actual, expected) => ({
388 message: ‘Type mismatch in command channel expression: expected ’${

getTypeName(
389 expected
390 )}’, but got ’${getTypeName(actual)}’.‘,
391 languageProperty: "chanExpr",
392 languageNode: node,
393 }));
394 };
395 const validateSupplyLocation = (
396 node: Supply,
397 accept: ValidationProblemAcceptor<AstNode>,
398 typir: TypirServices<AstNode>
399 ) => {
400 typir.validation.Constraints.ensureNodeIsEquals(node.where,

typeLocation, accept, (actual, expected) => ({
401 message: ‘Type mismatch in command where: expected ’${getTypeName(

expected)}’, but got ’${getTypeName(
402 actual
403 )}’.‘,
404 languageProperty: "where",
405 languageNode: node,
406 }));
407 };
408 const validateGetLocation = (
409 node: Get,
410 accept: ValidationProblemAcceptor<AstNode>,
411 typir: TypirServices<AstNode>
412 ) => {
413 const actual = typir.Inference.inferType(node.where);
414 if (actual instanceof Type && actual.getIdentifier() !== "bool" &&

actual.getIdentifier() !== "location") {
415 accept({
416 message: ‘Type mismatch in command where: expected ’bool | location

’, but got ’${
417 actual instanceof Type ? typir.Printer.printTypeName(actual) : "

inference problem"
418 }’.‘,
419 languageProperty: "where",
420 languageNode: node,
421 severity: "error",
422 });
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423 }
424 };
425
426 typir.validation.Collector.addValidationRulesForAstNodes({
427 Ltol: (node, accept, typir) => {
428 typir.validation.Constraints.ensureNodeIsEquals(node.expr, typeBool,

accept, () => ({
429 message: "SPEC needs to evaluate to ’bool’.",
430 languageProperty: "expr",
431 languageNode: node,
432 }));
433 },
434 ChannelObs: (node, accept, typir) => {
435 // Do not need to check broadcast symbol
436 if (node.bcast !== undefined) return;
437 typir.validation.Constraints.ensureNodeIsEquals(node.chan?.ref?.

$container, typeChannel, accept, () => ({
438 message: "Channel reference needs to evaluate to ’channel’.",
439 languageProperty: "chan",
440 languageNode: node,
441 }));
442 },
443 Send: (node, accept, typir) => {
444 validateCmdHeader(node, accept, typir);
445 validateChannelExpr(node, accept, typir);
446 typir.validation.Constraints.ensureNodeIsEquals(node.sendGuard,

typeBool, accept, (actual, expected) => ({
447 message: ‘Type mismatch in command guard: expected ’${getTypeName(

expected)}’, but got ’${getTypeName(
448 actual
449 )}’.‘,
450 languageProperty: "sendGuard",
451 languageNode: node,
452 }));
453 },
454 Receive: (node, accept, typir) => {
455 validateCmdHeader(node, accept, typir);
456 validateChannelExpr(node, accept, typir);
457 },
458 Get: (node, accept, typir) => {
459 validateCmdHeader(node, accept, typir);
460 validateGetLocation(node, accept, typir);
461 },
462 Supply: (node, accept, typir) => {
463 validateCmdHeader(node, accept, typir);
464 validateSupplyLocation(node, accept, typir);
465 },
466 Guard: (node, accept, typir) => {
467 typir.validation.Constraints.ensureNodeIsEquals(node.body, typeBool,

accept, (actual, expected) => ({
468 message: ‘Type mismatch in guard definition: expected ’${

getTypeName(expected)}’, but got ’${getTypeName(
469 actual
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470 )}’.‘,
471 languageProperty: "body",
472 languageNode: node.body,
473 }));
474 },
475 Agent: (node, accept, typir) => {
476 typir.validation.Constraints.ensureNodeIsEquals(node.init, typeBool,

accept, (actual, expected) => ({
477 message: ‘Type mismatch in agent initialization: expected ’${

getTypeName(expected)}’, but got ’${getTypeName(
478 actual
479 )}’.‘,
480 languageProperty: "init",
481 languageNode: node.init,
482 }));
483 typir.validation.Constraints.ensureNodeIsEquals(node.recvguard,

typeBool, accept, (actual, expected) => ({
484 message: ‘Type mismatch in agent receive-guard: expected ’${

getTypeName(expected)}’, but got ’${getTypeName(
485 actual
486 )}’.‘,
487 languageProperty: "recvguard",
488 languageNode: node.recvguard,
489 }));
490 },
491 Instance: (node, accept, typir) =>
492 typir.validation.Constraints.ensureNodeIsEquals(node.init, typeBool,

accept, (actual, expected) => ({
493 message: ‘Type mismatch in instance initialization: expected ’${

getTypeName(
494 expected
495 )}’, but got ’${getTypeName(actual)}’.‘,
496 languageProperty: "init",
497 languageNode: node.init,
498 })),
499 CompoundExpr: (node, accept, typir) => {
500 if (node.$type !== "BinExpr" || !isComparisonOp(node.operator)) {
501 return;
502 }
503 const leftType = typir.Inference.inferType(node.left);
504 const rightType = typir.Inference.inferType(node.right);
505 if ((leftType === typeRange || leftType === typeInt) && (rightType

=== typeInt || rightType === typeRange)) {
506 const leftRange = IntRange.fromRangeExpr(node.left);
507 const rightRange = IntRange.fromRangeExpr(node.right);
508 const { isAlwaysTrue, isAlwaysFalse } = IntRange.isStaticOutcome(

leftRange, rightRange, node.operator);
509 if (!isAlwaysTrue && !isAlwaysFalse) {
510 return;
511 }
512 let reason;
513 switch (node.operator) {
514 case "<":
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515 reason = isAlwaysTrue
516 ? ‘every value of ’${leftRange}’ is strictly less than every

value of ’${rightRange}’‘
517 : ‘every value of ’${leftRange}’ is greater than or equal to

every value of ’${rightRange}’‘;
518 break;
519 case "<=":
520 reason = isAlwaysTrue
521 ? ‘the max of ’${leftRange}’ is less than or equal to the min

of ’${rightRange}’‘
522 : ‘the min of ’${leftRange}’ is greater than the max of ’${

rightRange}’‘;
523 break;
524 case ">":
525 reason = isAlwaysTrue
526 ? ‘every value of ’${leftRange}’ is strictly greater than

every value of ’${rightRange}’‘
527 : ‘every value of ’${leftRange}’ is less than or equal to

every value of ’${rightRange}’‘;
528 break;
529 case ">=":
530 reason = isAlwaysTrue
531 ? ‘the min of ’${leftRange}’ is greater than or equal to the

max of ’${rightRange}’‘
532 : ‘the max of ’${leftRange}’ is less than the min of ’${

rightRange}’‘;
533 break;
534 }
535
536 accept({
537 message: ‘This comparison will always return ’${isAlwaysTrue ? "

true" : "false"}’ as ${reason}.‘,
538 languageNode: node,
539 languageProperty: "operator",
540 severity: "warning",
541 });
542 }
543 },
544 });
545 }
546
547 onNewAstNode(languageNode: AstNode, typir: TypirLangiumServices<

RCheckAstType>): void {
548 if (isEnum(languageNode)) {
549 // Exclude channel enum here
550 if (languageNode.name === "channel") return;
551
552 // The container of Enum node is always the root node
553 const documentUri = languageNode.$container.$document!.uri;
554 const enumName = ‘${documentUri}::${languageNode.name}‘;
555
556 // Skip type definition in case of duplicates
557 if (typir.factory.Primitives.get({ primitiveName: enumName }) !==

60



undefined) return;
558
559 // Create new enum type
560 typir.factory.Primitives.create({ primitiveName: enumName })
561 .inferenceRule({
562 languageKey: [Local, Param, MsgStruct, PropVar],
563 matching: (node: Local | Param | MsgStruct | PropVar) =>

languageNode === node.customType?.ref,
564 })
565 .inferenceRule({
566 languageKey: Enum,
567 matching: (node: Enum) => languageNode === node,
568 })
569 .finish();
570 }
571
572 if (isGuard(languageNode)) {
573 typir.factory.Functions.create({
574 functionName: languageNode.name,
575 outputParameter: { name: NO_PARAMETER_NAME, type: "bool" },
576 inputParameters: languageNode.params.map((p) => ({
577 name: p.name,
578 type: p,
579 })),
580 associatedLanguageNode: languageNode,
581 })
582 .inferenceRuleForDeclaration({
583 languageKey: Guard,
584 matching: (node: Guard) => languageNode === node,
585 })
586 .inferenceRuleForCalls({
587 languageKey: GuardCall,
588 matching: (node: GuardCall) => languageNode === node.guard.ref,
589 inputArguments: (node: GuardCall) => node.args,
590 validateArgumentsOfFunctionCalls: true,
591 })
592 .finish();
593 }
594
595 if (isAgent(languageNode)) {
596 // Skip class definition in case of duplicates
597 if (languageNode.name === undefined || typir.factory.Classes.get(

languageNode.name).getType() !== undefined) {
598 return;
599 }
600
601 typir.factory.Classes.create(getClassDetails(languageNode))
602 .inferenceRuleForClassDeclaration({
603 languageKey: Agent,
604 matching: (node: Agent) => languageNode === node,
605 })
606 .inferenceRuleForFieldAccess({
607 languageKey: QualifiedRef,
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608 matching: (node: QualifiedRef) => {
609 const qualifier = node.instance.ref;
610 // Handle LtolQuant inference separately
611 if (isLtolQuant(qualifier)) return false;
612
613 return qualifier?.agent.ref === languageNode;
614 },
615 field: (node: QualifiedRef) => node.variable.ref!.name!,
616 })
617 .inferenceRuleForFieldAccess({
618 languageKey: AutomatonState,
619 matching: (node: AutomatonState) => languageNode === node.instance.

ref?.agent.ref,
620 field: () => "automaton-state",
621 })
622 .finish();
623 }
624 }
625 }

Listing 1: Full implementation of the R-CHECK type system.

Utility Functions

1 import { NodeFileSystem } from "langium/node";
2 import { extractAstNode } from "../cli/cli-util.js";
3 import { Agent, Assign, BaseProcess, BinExpr, CompoundExpr, isBinExpr,

isChoice, isGet, isLocal, isMsgStruct, isNumberLiteral, isParam,
isPropVar, isPropVarRef, isQualifiedRef, isReceive, isRef, isRelabel,
isRep, isSend, isSequence, isSupply, isTarget, isUMinus, Local, Model,
PropVar, Relabel, Sequence, Target } from "./generated/ast.js";

4 import { createRCheckServices } from "./r-check-module.js";
5 import { AstNode } from "langium";
6 import { ClassTypeDetails, AnnotatedTypeAfterValidation,

ValidationProblemAcceptor, TypirServices } from "typir";
7
8 export async function parseToJson(fileName: string) {
9 const services = createRCheckServices(NodeFileSystem).RCheck;

10 const model = await extractAstNode<Model>(fileName, services);
11 return JSON.stringify(model, getAstReplacer());
12 }
13
14 export function parseToJsonSync(fileName: string) {
15 let result = "";
16 (async () => await parseToJson(fileName).then((x) => result = x))();
17 return result;
18 }
19
20 const getAstReplacer = () => {
21 /**
22 * Used with JSON.stringify() to make a JSON of a Langium AST.
23 */
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24
25 // Extra measure to remove circular references. See
26 // https://stackoverflow.com/a/53731154
27 const seen = new WeakSet();
28 return (key: any, value: any) => {
29 // Remove Langium nodes that we won’t need
30 if (
31 key === "references" || key === "$cstNode" || key === "$refNode"

||
32 key === "_ref" || key === "ref"
33 ||
34 key === "$nodeDescription" || key === "_nodeDescription") {
35 return;
36 }
37 // Remove seen nodes
38 if (typeof value === "object" && value !== null) {
39 if (seen.has(value)) {
40 return;
41 }
42 seen.add(value);
43 }
44 return value;
45 };
46 };
47
48 type ComparisonOp = "<" | "<=" | ">" | ">=";
49
50 export class IntRange {
51 private lower: number;
52 private upper: number;
53
54 constructor(lower: number, upper: number) {
55 this.lower = lower;
56 this.upper = upper;
57 }
58
59 public static fromRangeExpr(expr: CompoundExpr | PropVar | Target):

IntRange {
60 if (isRef(expr) || isPropVar(expr) || isPropVarRef(expr) || isTarget(expr

) || isQualifiedRef(expr)) {
61 const decl = isPropVar(expr) || isTarget(expr) ? expr : expr.variable.

ref;
62 if (isLocal(decl) || isParam(decl) || isMsgStruct(decl) || isPropVar(

decl)) {
63 if (decl.rangeType !== undefined) {
64 return new this(decl.rangeType.lower, decl.rangeType.upper);
65 } else if (decl.builtinType === "int") {
66 return new this(Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY)

;
67 } else {
68 throw new Error(
69 ‘Encountered declaration with unexpected type: ${decl.builtinType

?? decl.customType?.ref?.name}.‘
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70 );
71 }
72 } else {
73 throw new Error("Unexpected target found.");
74 }
75 } else if (isNumberLiteral(expr)) {
76 return new this(expr.value, expr.value);
77 } else if (isBinExpr(expr)) {
78 const leftRange = IntRange.fromRangeExpr(expr.left);
79 const rightRange = IntRange.fromRangeExpr(expr.right);
80 switch (expr.operator) {
81 case "+":
82 return leftRange.plus(rightRange);
83 case "-":
84 return leftRange.minus(rightRange);
85 case "*":
86 return leftRange.times(rightRange);
87 case "/":
88 return leftRange.dividedBy(rightRange);
89 default:
90 throw new Error("Unexpected operator found.");
91 }
92 } else if (isUMinus(expr)) {
93 return new this(0, 0).minus(IntRange.fromRangeExpr(expr.expr));
94 } else {
95 throw new Error(‘Unexpected expression found: ’${expr.$type}’.‘);
96 }
97 }
98
99 public static isStaticOutcome(

100 leftRange: IntRange,
101 rightRange: IntRange,
102 operator: ComparisonOp
103 ): { isAlwaysTrue: boolean; isAlwaysFalse: boolean } {
104 switch (operator) {
105 case "<":
106 return {
107 isAlwaysTrue: leftRange.upper < rightRange.lower,
108 isAlwaysFalse: leftRange.lower >= rightRange.upper,
109 };
110 case "<=":
111 return {
112 isAlwaysTrue: leftRange.upper <= rightRange.lower,
113 isAlwaysFalse: leftRange.lower > rightRange.upper,
114 };
115 case ">":
116 return {
117 isAlwaysTrue: leftRange.lower > rightRange.upper,
118 isAlwaysFalse: leftRange.upper <= rightRange.lower,
119 };
120 case ">=":
121 return {
122 isAlwaysTrue: leftRange.lower >= rightRange.upper,
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123 isAlwaysFalse: leftRange.upper < rightRange.lower,
124 };
125 }
126 }
127
128 public plus(other: IntRange): IntRange {
129 return new IntRange(this.lower + other.lower, this.upper + other.upper);
130 }
131
132 public minus(other: IntRange): IntRange {
133 return new IntRange(this.lower - other.upper, this.upper - other.lower);
134 }
135
136 public times(other: IntRange): IntRange {
137 const p1 = this.lower * other.lower;
138 const p2 = this.lower * other.upper;
139 const p3 = this.upper * other.lower;
140 const p4 = this.upper * other.upper;
141 return new IntRange(Math.min(p1, p2, p3, p4), Math.max(p1, p2, p3, p4));
142 }
143
144 public dividedBy(other: IntRange): IntRange {
145 if (other.lower === 0 || other.upper === 0) {
146 throw new Error("Division by a range that includes zero is not

supported.");
147 }
148 const d1 = Math.trunc(this.lower / other.lower);
149 const d2 = Math.trunc(this.lower / other.upper);
150 const d3 = Math.trunc(this.upper / other.lower);
151 const d4 = Math.trunc(this.upper / other.upper);
152
153 return new IntRange(Math.min(d1, d2, d3, d4), Math.max(d1, d2, d3, d4));
154 }
155
156 public intersects(other: IntRange): boolean {
157 return this.lower <= other.upper && other.lower <= this.upper;
158 }
159
160 public contains(other: IntRange): boolean {
161 return this.lower <= other.lower && this.upper >= other.upper;
162 }
163
164 public toString(): string {
165 if (isFinite(this.lower) && isFinite(this.upper)) {
166 return this.lower === this.upper ? ‘${this.lower}‘ : ‘${this.lower}..${

this.upper}‘;
167 }
168 return "int";
169 }
170 }
171
172 export const isComparisonOp = (o: BinExpr["operator"]): o is ComparisonOp =>

{
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173 return o === "<" || o === "<=" || o === ">" || o === ">=";
174 };
175
176 export const getClassDetails = (agent: Agent): ClassTypeDetails<AstNode> => {
177 const fieldNames = new Set<string>(["automaton-state"]);
178
179 const locals = agent.locals
180 .map((l) => {
181 if (fieldNames.has(l.name)) {
182 return undefined;
183 }
184 fieldNames.add(l.name);
185 return { name: l.name, type: l };
186 })
187 .filter((l): l is { name: string; type: Local } => l !== undefined);
188
189 const processes = getProcessNames(agent)
190 .map((n) => {
191 if (fieldNames.has(n)) {
192 return undefined;
193 }
194 fieldNames.add(n);
195 return { name: n, type: "bool" };
196 })
197 .filter((p): p is { name: string; type: string } => p !== undefined);
198
199 return {
200 className: agent.name,
201 fields: [{ name: "automaton-state", type: "int" }, ...processes, ...

locals],
202 methods: [],
203 };
204 };
205
206 export const getProcessNames = (agent: Agent): string[] => {
207 const stack: (BaseProcess | Sequence)[] = [agent.repeat];
208 const processNames: string[] = [];
209
210 while (stack.length !== 0) {
211 const process = stack.pop();
212 if (isSend(process) || isReceive(process) || isGet(process) || isSupply(

process)) {
213 if (process.name) {
214 processNames.push(process.name);
215 }
216 }
217 if (isChoice(process) || isSequence(process)) {
218 stack.push(process.left);
219 if (process.right !== undefined) {
220 stack.push(process.right);
221 }
222 }
223 if (isRep(process)) {
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224 stack.push(process.process);
225 }
226 }
227
228 return processNames;
229 };
230
231 export const getTypeName = (type: AnnotatedTypeAfterValidation): string |

undefined => {
232 return type.name.split("::").pop();
233 };
234
235 export const intersectMaps = <K, V>(maps: Map<K, V>[]): Map<K, V> => {
236 if (maps.length === 0) {
237 return new Map<K, V>();
238 }
239 if (maps.length === 1) {
240 return new Map(maps[0]);
241 }
242
243 const resultMap = new Map<K, V>();
244 const firstMap = maps[0];
245
246 // Iterate over the entries of the first map
247 for (const [key, value] of firstMap.entries()) {
248 let isInAllMaps = true;
249
250 // Check if this key exists in all other maps with the same value
251 for (let i = 1; i < maps.length; i++) {
252 const currentMap = maps[i];
253 if (!currentMap.has(key) || currentMap.get(key) !== value) {
254 isInAllMaps = false;
255 break;
256 }
257 }
258 // If the key and value matched across all maps, add it to the result
259 if (isInAllMaps) {
260 resultMap.set(key, value);
261 }
262 }
263
264 return resultMap;
265 };
266
267 export const validateAssignment = (
268 node: Relabel | Assign,
269 getTypeName: (type: AnnotatedTypeAfterValidation) => string | undefined,
270 accept: ValidationProblemAcceptor<AstNode>,
271 typir: TypirServices<AstNode>
272 ) => {
273 const targetNode = isRelabel(node) ? node.var.ref! : node.left.ref!;
274 const exprNode = isRelabel(node) ? node.expr : node.right;
275 const property = isRelabel(node) ? "var" : "left";
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276
277 const typeInt = typir.factory.Primitives.get({ primitiveName: "int" });
278 const typeRange = typir.factory.Primitives.get({ primitiveName: "range" });
279
280 const targetType = typir.Inference.inferType(targetNode);
281 const exprType = typir.Inference.inferType(exprNode);
282
283 if ((targetType === typeRange && exprType === typeInt) || (targetType ===

typeRange && exprType === typeRange)) {
284 const targetRange = IntRange.fromRangeExpr(targetNode);
285 const exprRange = IntRange.fromRangeExpr(exprNode);
286
287 if (!targetRange.contains(exprRange)) {
288 accept({
289 message: ‘Range variable cannot be ${
290 property === "var" ? "relabelled" : "assigned"
291 } as the range ’${targetRange}’ does not contain the range of the

expression ’${exprRange}’.‘,
292 languageNode: node,
293 languageProperty: property,
294 severity: "error",
295 });
296 }
297 } else {
298 typir.validation.Constraints.ensureNodeIsAssignable(exprNode, targetNode,

accept, (actual, expected) => ({
299 message: ‘${property === "var" ? "Variable" : "Expression"} of type ’${

getTypeName(
300 property === "var" ? expected : actual
301 )}’ cannot be ${
302 property === "var" ? "relabelled with expression of type" : "assigned

to variable of type"
303 } ’${getTypeName(property === "var" ? actual : expected)}’.‘,
304 languageNode: node,
305 languageProperty: property,
306 severity: "error",
307 }));
308 }
309 };

Listing 2: Full implementation of used utility functions.
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Grammar Changes

1 diff --git a/src/language/r-check.langium b/src/language/r-check.
langium

2 index 952f2f6..58f4ed1 100644
3 --- a/src/language/r-check.langium
4 +++ b/src/language/r-check.langium
5 @@ -35,7 +35,7 @@ Agent:
6 ’repeat’ ’:’ repeat=Choice
7 ;
8
9 -Relabel: var=[PropVar] ’<-’ CompoundExpr;

10 +Relabel: var=[PropVar] ’<-’ expr=CompoundExpr;
11
12 Choice:
13 left=Sequence ({infer Choice.left=current} ’+’ right=Sequence)*;
14 @@ -69,10 +69,9 @@ Assign: left=[Target] ’:=’ right=CompoundExpr;
15
16 ChannelExprRef: Case | Local;
17 ChannelExpr: (channel=[ChannelExprRef] | bcast = ’*’);
18 -LocationExprRef: Instance | Local;
19 -LocationExpr: (location=[LocationExprRef]);
20 +LocationExprRef: Local;
21 SupplyLocationExpr: (location=[LocationExprRef] | myself="myself" |

any="any");
22 -GetLocationExpr: (location=[LocationExprRef] | predicate=

CompoundExpr);
23 +GetLocationExpr: predicate=CompoundExpr;
24
25
26 fragment TypedDeclaration:
27 @@ -91,30 +90,32 @@ Param: TypedDeclaration;
28 MsgStruct: TypedDeclaration;
29 PropVar: TypedDeclaration;
30
31 -
32 CompoundExpr:
33 - left=Comparison ({infer CompoundExpr.left=current} operator

=(’&’|’|’|’->’|’U’|’R’|’W’) right=Comparison)*;
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34 + AddSub;
35 +
36 +Logical infers CompoundExpr:
37 + Comparison ({infer BinExpr.left=current} operator

=(’&’|’|’|’->’|’U’|’R’|’W’) right=Comparison)*;
38
39 -Comparison:
40 - left=AddSub ({infer Comparison.left=current} operator

=(’<’|’<=’|’>’|’>=’|’=’|’!=’|’==’) right=AddSub)?;
41 +Comparison infers CompoundExpr:
42 + BaseExpr ({infer BinExpr.left=current} operator

=(’<’|’<=’|’>’|’>=’|’=’|’!=’|’==’) right=BaseExpr)?;
43
44 -AddSub:
45 +AddSub infers CompoundExpr:
46 MulDiv ({infer BinExpr.left=current} operator=(’+’ | ’-’) right=

MulDiv)*;
47
48 -MulDiv:
49 - BaseExpr ({infer BinExpr.left=current} operator=(’*’ | ’/’)

right=BaseExpr)*;
50 +MulDiv infers CompoundExpr:
51 + Logical ({infer BinExpr.left=current} operator=(’*’ | ’/’) right

=Logical)*;
52
53 Qualifier : Instance | LtolQuant;
54
55 -BaseExpr:
56 - ’(’ CompoundExpr ’)’
57 +BaseExpr infers CompoundExpr:
58 + ’(’ AddSub ’)’
59 | {infer AutomatonState} instance=[Instance] ’-automaton-state’
60 | {infer QualifiedRef} instance=[Qualifier] ’-’ variable=[Target

]
61 | {infer Ref} variable=[Target]
62 | {infer PropVarRef} variable=[PropVar:PV]
63 - | {infer UMinus} ’-’ expr=BaseExpr
64 - | {infer Neg} ’!’ expr=BaseExpr
65 - | {infer Ref} currentChannel=’chan’
66 + | {infer UMinus} operator=’-’ expr=BaseExpr
67 + | {infer Neg} operator=’!’ expr=BaseExpr
68 + | {infer ChannelRef} currentChannel=’chan’
69 | {infer Myself} myself=’myself’
70 | {infer Broadcast} value="*"
71 | {infer NumberLiteral} value=INT
72 @@ -124,16 +125,14 @@ BaseExpr:
73 | {infer LtolBase} LtolBase
74 ;
75
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76 -type Expr = BaseExpr | BinExpr | CompoundExpr | Comparison ;
77 -
78 Ltol: (quants+=LtolQuant)* expr=CompoundExpr;
79
80 LtolQuant: op=(’forall’|’exists’) name=ID ’:’ (anyKind=’Agent’ |

kinds+=[Agent] (’|’ kinds+=[Agent])*) ’.’;
81
82 LtolMod infers Ltol:
83 - {infer Finally} ’F’ expr=CompoundExpr
84 - | {infer Globally} ’G’ expr=CompoundExpr
85 - | {infer Next} ’X’ expr=CompoundExpr
86 + {infer Finally} operator=’F’ expr=CompoundExpr
87 + | {infer Globally} operator=’G’ expr=CompoundExpr
88 + | {infer Next} operator=’X’ expr=CompoundExpr
89 ;
90
91 LtolBase infers Ltol:
92 @@ -147,10 +146,10 @@ CompoundObs infers Obs:
93
94 BaseObs : LiteralObs | ChannelObs | SenderObs | ForallObs |

ExistsObs;
95 LiteralObs: value=(’true’|’false’);
96 -ChannelObs: ’chan’ (’==’|’=’|’!=’) (chan=ID | chan=’*’);
97 -SenderObs: ’sender’ (’==’|’=’|’!=’) sender=ID;
98 -ForallObs: ’forall’ ’(’ (pred=CompoundExpr) ’)’;
99 -ExistsObs: ’exists’ ’(’ (pred=CompoundExpr) ’)’;

100 +ChannelObs: ’chan’ (’==’|’=’|’!=’) (chan=[Case] | bcast=’*’);
101 +SenderObs: ’sender’ (’==’|’=’|’!=’) sender=[Instance];
102 +ForallObs: operator=’forall’ ’(’ (expr=CompoundExpr) ’)’;
103 +ExistsObs: operator=’exists’ ’(’ (expr=CompoundExpr) ’)’;
104
105
106 hidden terminal WS: /\s+/;

Listing 3: Full listing of the grammar changes.
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